3.3.4.12 Example 12 (y)4+4y(y)3+6y2(y)2(14y3)y(3y3)y=0
(y)4+4y(y)3+6y2(y)2(14y3)y(3y3)y=0

With IC

y(x0)=y0

Since x is missing then this is of the form y=f(y) we just need to solve for y. The solution is in terms of RootOf

y=RootOf(_Z4+4y_Z3+6y2_Z2(14y3)_Z(3y3)y)

Integrating gives

dyRootOf(_Z4+4y_Z3+6y2_Z2(14y3)_Z(3y3)y)=dxy(x)dτRootOf(_Z4+4τ_Z3+6τ2_Z2(14τ3)_Z(3τ3)τ)=x+c

Applying IC the above becomes

0y0dτRootOf(_Z4+4τ_Z3+6τ2_Z2(14τ3)_Z(3τ3)τ)+y0y(x)dτRootOf(_Z4+4τ_Z3+6τ2_Z2(14τ3)_Z(3τ3)τ)=xx0