3.3.7.2 Example 2
dydx=2y2xy3xy2x2

Let y=ux or u=yx, hence dydx=xdudx+u and the above ode becomes

xdudx+u=2u2x2x2u3x2u2x2xdudx+u=2u2u3u2xdudx=2u2u3u2u=2u2u3u2u(3u2)3u2=(2u2u)u(3u2)3u2=2u2u3u2+2u3u2=u2+u3u2=u(1u)3u2

Hence

dudx=(1x)(u(1u)3u2)

Which is separable. If we do not obtain separable ode, then we have made mistake. Integrating gives

3u2u(1u)du=1xdxu(1u)3u202lnuln(u1)=lnx+c1

Replacing u=yx gives

2ln(yx)ln(yx1)=lnx+c1ln(x2y2)ln(yxx)=lnx+c1ln(x2y2)+ln(xyx)=lnx+c1

Applying exponential to each side gives

(1)(x2y2)(xyx)=c2x

Singular solution is when u(1u)3u2=0. This gives u=0 and u=1. Hence this implies y=0 and y=x. Therefore the solutions are

(x2y2)(xyx)=c2xy=0y=x

Lets say that we had also initial conditions y(1)=1, then the above gives

(111)=c212=c2

Therefore the solution (1) becomes

(x2y2)(xyx)=12x