3.3.7.6 Example 6
dydx=3yx3x2+y2y(0)=1

At x=0,y=1 then f(x,y)=3yx3x2+y2 is defined. And fy is also defined at x=0,y=1. Hence a unique solution exist.

Let y=ux or u=yx, hence dydx=xdudx+u and the above ode becomes

xdudx+u=3ux23x2+u2x2xdudx+u=3u3+u2xdudx=3u3+u2u=3uu(3+u2)3+u2=6uu33+u2

This is separable.

3+u26uu3du=1xdx

Integrating

3+u26uu3du=1xdx12lnu14ln(u2+6)=lnx+c12lnu14ln(u2+6)lnx=lnx+lnc1

Solving for u gives

u1=31236+4x4c14u2=31236+4x4c14u3=3+1236+4x4c14u4=3+1236+4x4c14

Hence

y1x=31236+4x4c14y2x=31236+4x4c14y3x=3+1236+4x4c14y4x=3+1236+4x4c14

or for x0

y1=3x21236x4+4c14y2=3x21236x4+4c14y3=3x2+1236x4+4c14y4=3x3+1236x4+4c14

Applying IC y(0)=1

1=1c141=1c141=1c141=1c14

or

1=1c141=1c141=1c141=1c14

Throwing the first 2 since complex. Then c1=1. Hence

y=3x3+1236x4+4=3x3+9x4+1