4.5.1.3 Example 3 y+2ycot(2x)=4xcsc(x)sec2(x)
y+2ycot(2x)=4xcsc(x)sec2(x)

In normal form the ode is

y+p(x)y=q(x)

Hence here we have p(x)=2cot(2x),q(x)=4xcsc(x)sec(x)2. Therefore the integrating factor is

μ=ep(x)dx=e2cot(2x)dx=e12ln(1+cot2(2x))=11+cot2(2x)

Then the ode becomes

ddx(yμ)=μ4xcsc(x)sec2(x)ddx(y11+cot2(2x))=11+cot2(2x)4xcsc(x)sec2(x)y1+cot2(2x)=4xcsc(x)sec2(x)1+cot2(2x)dx+c1y=1+cot2(2x)c1+1+cot2(2x)4xcsc(x)sec2(x)1+cot2(2x)dx