2.5.1.1 Example 1 \(y^{\prime }-\frac {1}{2\sqrt {x}}y=x\)
\begin{align*} y^{\prime }-\frac {1}{2\sqrt {x}}y & =x\\ y\left ( 0\right ) & =1 \end{align*}
In normal form the ode is
\[ y^{\prime }+p\left ( x\right ) y=q\left ( x\right ) \]
Hence here we have
\(p\left ( x\right ) =\frac {-1}{2\sqrt {x}}\) and
\(q\left ( x\right ) =x\). The domain of
\(p\left ( x\right ) \) is all the real line
except
\(x=0\) and domain of
\(q\left ( x\right ) \) is all the real line. Combining domains gives all the real line except
\(x=0\). Since initial
\(x_{0}\) is
\(x=0\) which is outside the domain, then uniqueness and existence theory do
not apply. Solving gives
\[ y=-2x^{\frac {3}{2}}-12\sqrt {x}-6x-12+c_{1}e^{\sqrt {x}}\]
Applying IC
\begin{align*} 1 & =-12+c_{1}\\ c_{1} & =13 \end{align*}
Hence solution is
\[ y=-2x^{\frac {3}{2}}-12\sqrt {x}-6x-12+13e^{\sqrt {x}}\qquad x\neq 0 \]
In this case, solution exists and unique.