3.3.11.1 Examples
3.3.11.1.1 Example 1

3.3.11.1.1 Example 1 Solve

y=y(y2+3x2+2x)x2+y2

Applying change of variables y=ux results in

u=u(u2+3)u2+1x+1x

Which is separable. Solving this for u(x) by integration gives

1u(u2+3)u2+1du=x+1xdxu(u2+3)u2+1013ln((u2+3)u)+x+ln(x)=c1

Hence the solution  in y(x) is

13ln(((yx)2+3)yx)+x+ln(x)=c1

Singular solution is when u(u2+3)=0 or u=0,u=±i3 which implies y=0 and y=±i3x. Hence the solutions are

13ln(((yx)2+3)yx)+x+ln(x)=c1y=0y=i3xy=i3x