3.3.18.2 Integrating factor that depends on y only
3.3.18.2.1 Example 1
3.3.18.2.2 Example 2

Let

(1)μM(x,y)+μN(x,y)dydx=dϕ(x,y)=ϕxdxdx+ϕydydx(2)=ϕx+ϕydydx

Comparing (1),(2) then

ϕx=μMϕy=μN

The compatibility condition is 2ϕyx=2ϕxy then this implies

y(ϕx)=x(ϕy)μMy=μNxμyM+μMy=μxN+μNxμyM=μxN+μNxμMyμyM=μxN+μ(NxMy)μy=μxNM+1Mμ(NxMy)

Assuming μμ(y) then μx=0 and the above simplifies to

μy=1Mμ(NxMy)dμdy1μ=1M(NxMy)

Let 1M(NxMy)=B. If BB(y) which depends only on y then we can solve the above.

dμdy1μ=B(y)μ=eBdy

Let M=μM,N=μN then the ode

M(x,y)+N(x,y)y=0

is now exact.

3.3.18.2.1 Example 1 Solve

dydx=(x21)(y21)(x21)dy=(x21)(y21)(x21)dx(x21)(y21)(x21)dx+dy=0

Comparing to

M(x,y)dx+N(x,y)dy=0

Shows that M=(x21)(y21)(x21),N=1. We see that MyNx. Hence not exact. Lets try

B=1M(NxMy)=(1x2)(x21)(y21)(0y(x21)(y21))=(1x2)(x21)(y21)y(x21)(y21)=(1x2)y(x21)(y21)=y(y21)

Since B does not depend on x then we can use this for an integrating factor.

μ=eBdy=ey(y21)dy=1y1y+1

Hence the ode now becomes

μMdx+μNdy=0(A1)M¯dx+N¯dy=0

Where

M¯=μM=1y1y+1(x21)(y21)(x21)=(x21)(y21)y1y+1(x21)

And

N¯=μN=1y1y+1

Now ode (A1) is exact. Now we follow the main method for solving an exact ode on the above. Let

(1)ϕx=M¯(2)ϕy=N¯

Since M has both y and x, in it and N has only y in it, then in this case we start differently than before. We start with (2) and not (1) as it makes things simpler when integrating.

Integrating (2) w.r.t. y gives

ϕ=N¯dy+f(x)=1y1y+1dy+f(x)

But 1y1y+1dy=(y1)(y+1)ln(y+y21)y1y+1=y21ln(y+y21)y1y+1, hence the above becomes

(3)ϕ=y21ln(y+y21)y1y+1+f(x)

Taking derivative of (3) w.r.t. x gives

ϕx=ddx(y21ln(y+y21)y1y+1)+f(x)(4)ϕx=f(x)

But ϕx=M¯. Hence the above becomes

M¯=f(x)(x21)(y21)y1y+1(x21)=f(x)

To solve for f(x) we now integrate the above w.r.t. x which gives

x(τ21)(y21)y1y+1(τ21)dτ=f(x)

No need to add constant of integration, as that will be absorbed anyway. Substituting the above back into (3) gives

ϕ=y21ln(y+y21)y1y+1+x(τ21)(y21)y1y+1(τ21)dτ

ϕ=c, hence the solution is

(4A)y21ln(y+y21)y1y+1+x(τ21)(y21)y1y+1(τ21)dτ+c=0

Lets now see what happens if after Eq (2), we started with M and not N as we always do. Integrating (1) w.r.t. x gives

ϕ=M¯dx+f(y)=(x21)(y21)y1y+1(x21)dx+f(y)(5)=x(τ21)(y21)y1y+1(τ21)dτ+f(y)

Taking derivative w.r.t. y the above becomes

ϕy=ddyx(τ21)(y21)y1y+1(τ21)dτ+f(y)=xy((τ21)(y21)y1y+1(τ21))dτ+f(y)=0+f(y)=f(y)

But ϕy=N¯, hence the above becomes

1y1y+1=f(y)

Integrating w.r.t. y gives

f(y)=1y1y+1dy+cf(y)=(y1)(y+1)ln(y+y21)y1y+1+c

Substituting this into (5) gives the solution as (after combining constants)

c1=x(τ21)(y21)y1y+1(τ21)dτ+(y1)(y+1)ln(y+y21)y1y+1

Which is same answer as (4A).  So starting with M or N gives same result. But if N depends on x,y and M depends on only one of these, it can be simpler to pick M. Same for the other way around. If N depends on only one, and M depends on both x,y, then it will be easier to start with N. But in both cases, same result should be obtained.

3.3.18.2.2 Example 2 This is same example as above but with initial conditions y(x0)=y0 to show how to handle IC when unable to do the integration.

(x21)(y21)(x21)dx+dy=0y(x0)=y0

The solution found in above example is

y21ln(y+y21)y1y+1+x(τ21)(y21)y1y+1(τ21)dτ+c=0

At y(x0)=y0 the above becomes

y021ln(y0+y021)y01y0+1+x0x(τ21)(y21)y01y0+1(τ21)dτ+c=0

Substituting this value of c in the solution gives

y21ln(y+y21)y1y+1+x0x(τ21)(y21)y1y+1(τ21)dτ=y021ln(y0+y021)y01y0+1+x0x(τ21)(y21)y01y0+1(τ21)dτ

Or

(y21ln(y+y21)y1y+1y021ln(y0+y021)y01y0+1)+x0x(τ21)(y21)y1y+1(τ21)(τ21)(y21)y01y0+1(τ21)dτ=0