3.3.21.3 Examples
3.3.21.3.1 Example 1

3.3.21.3.1 Example 1

(1)y=x+1xy2

Comparing to y=f0+f1y+f2y2 form shows that f0=x,f1=0,f2=1x. We will use the method of converting to second order ode. Let y=uf2u=xuu. Using this substitution results in

f2u(f2+f1f2)u+f22f0u=01xu(1x2)u+(1x2)(x)u=01xu+1x2u1xu=0xu+uxu=0

This is Bessel ode the solution is

u=c1BesselI(0,x)+c2BesselK(0,x)

But y=xuu, hence

y=x(c1BesselI(1,x)c2BesselK(1,x))c1BesselI(0,x)+c2BesselK(0,x)