3.3.22.1 Solution method

(This all Need to be revised, as I am using different transformation here than described above, I need to clarify all of this).

Find what is called the abel invariant and check if constant.

Δ=(f0f3+f0f3+3f0f3f1)327f34f05

The substitution y=1u is now applied. Therefore y=1u2u. Substituting this in (1) gives

1u2u=f0(x)+f1(x)1u+f2(x)1u2+f3(x)1u3uu=u3f0(x)+u2f1(x)+uf2(x)+f3(x)(2)uu=u3f0(x)u2f1(x)uf2(x)f3(x)

Using the substitution u=1E(y+f23f3) where E=exp(f1f223f3dx) in the above gives

1E(y+f23f3)u=u3f0(x)u2f1(x)uf2(x)f3(x)

Hence

u=1E2dEdx(y+f23f3)+1E(y+13f2f3f2f3f32)=1E2dEdx(1u+f23f3)+1E(1u2u+13f2f3f2f3f32)u+uEu2=1E2dEdx(1u+f23f3)+13Ef2f3f2f3f32u(1+1Eu2)=1E2dEdx(1u+f23f3)+13Ef2f3f2f3f32u=Eu21+Eu2(1E2dEdx(1u+f23f3)+13Ef2f3f2f3f32)u=u21+Eu2(1EdEdx(1u+f23f3)+13f2f3f2f3f32)

Substituting the above into (2) gives

uu21+Eu2(1EdEdx(1u+f23f3)+13f2f3f2f3f32)=u3f0u2f1uf2f3

Therefore

E=exp(f1(x)f22(x)3f3(x)dx)ξ=f3(x)E2dxu=1E(y+f2(x)3f3(x))

The above are used to convert the first kind Abel ode to canonical form. (To finish).