Example 2
\[ y^{\prime }=y^{4}+x^{\left ( -\frac {4}{3}\right ) }\]
This one, both Maple and Mathematica can solve. Lets see how. First we check the Chini
invariant. It should come out as constant. We see that \(f=1,g=0,h=x^{\left ( -\frac {4}{3}\right ) },n=4\), hence
\begin{align*} \Delta & =f^{-n-1}h^{-2n+1}\left ( fh^{\prime }-f^{\prime }h-ngfh\right ) ^{n}n^{-n}\\ & =1\left ( x^{\left ( -\frac {4}{3}\right ) }\right ) ^{-2\left ( 4\right ) +1}\left ( \frac {d}{dx}\left ( x^{\left ( -\frac {4}{3}\right ) }\right ) -0-0\right ) ^{4}4^{-4}\\ & =\left ( x^{-\frac {4}{3}}\right ) ^{-7}\left ( -\frac {4}{3x^{\frac {7}{3}}}\right ) ^{4}4^{-4}\\ & =4^{-4}x^{\frac {28}{3}}\left ( \frac {4^{4}}{3^{4}}x^{-\frac {28}{3}}\right ) \\ & =4^{-4}\left ( \frac {4^{4}}{3^{4}}\right ) \\ & =\frac {1}{81}\end{align*}
The above \(\Delta \) is also used in the solution below. So we need to find it each time. It
is a constant in this example, this is why Maple and Mathematica were able to
solve it. Now we follow Kamke method to actually solve the ode. The first thing is
to find \(\alpha ,\beta \) such that (2) is true. We see that \(f=1,g=0,h=x^{\left ( -\frac {4}{3}\right ) },n=4\). Now we need to find \(\alpha \). This can be
found more easily from EQ (4)
\begin{equation} z^{\prime }-gz=\alpha h \tag {4}\end{equation}
Where \(z=\left ( \frac {h}{f}\right ) ^{\frac {1}{n}}=\left ( \frac {x^{\left ( -\frac {4}{3}\right ) }}{1}\right ) ^{\frac {1}{4}}=x^{-\frac {1}{3}}\). Hence \(z^{\prime }=-\frac {1}{3}x^{-\frac {4}{3}}\). Therefore (4) becomes (given that
\(g=0\))
\begin{align*} -\frac {1}{3}x^{-\frac {4}{3}} & =\alpha x^{\left ( -\frac {4}{3}\right ) }\\ \alpha & =-\frac {1}{3}\end{align*}
Since \(\Delta \) is not zero, then solution is directly given as (from Kamke)
\begin{align*} \int ^{\alpha \left ( \frac {h}{f}\right ) ^{\frac {-1}{n}}y\left ( x\right ) }\frac {1}{\frac {u^{n}}{\Delta }-u+1}du-\int \alpha \left ( \frac {h}{f}\right ) ^{\frac {-1}{n}}hdx+c_{1} & =0\\ \int ^{-\frac {1}{3}x^{\frac {1}{3}}y\left ( x\right ) }\frac {1}{81u^{4}-u+1}du+\frac {1}{3}\int x^{\left ( \frac {1}{3}\right ) }x^{\left ( -\frac {4}{3}\right ) }dx+c_{1} & =0\\ \int ^{-\frac {1}{3}x^{\frac {1}{3}}y\left ( x\right ) }\frac {1}{81u^{4}-u+1}du+\frac {1}{3}\int \frac {1}{x}dx+c_{1} & =0\\ \int ^{-\frac {1}{3}x^{\frac {1}{3}}y\left ( x\right ) }\frac {1}{81u^{4}-u+1}du+\frac {1}{3}\ln \left ( x\right ) +c_{1} & =0 \end{align*}