3.3.22.4 Examples
3.3.22.4.1 Example 1

3.3.22.4.1 Example 1

y=xexy+xe2xy3

Comparing to

y=f0+f1y+f2y2+f3y3

Shows that

f0=xexf1=1f2=0f3=xe2x

Since f2=0 then we check is if the invariant depends on x or not.

Δ=(f0f3+f0f3+3f0f3f1)327f34f05=((ex+xex)(xe2x)+(xex)(e2x+2xe2x)+3(xex)(xe2x)(1))327(xe2x)4(xex)5=0

Since Δ does not depend on x, then this is the easy case. We can convert the ode to separable using

y=(f0f3)13u=(xexxe2x)13u=(e3x)13u=exu

Applying this change of variable to the original ode results in

ex(uu)=xex+xu3exexuuu=x+xu3uu=x+xu3=x(u31)

Which is separable. Solving and simplifying gives

33x23ln(43((1+2u)23+1))23ln(u1)+63c1+6arctan(3(2u+1)3)=0

But u=yex. Hence the solution to the original Abel ode is

33x23ln(43((12yex)23+1))23ln(yex1)+63c1+6arctan(3(2yex+1)3)=0