3.3.25.4 Ordinary point using Taylor series method
3.3.25.4.1 Example 1
3.3.25.4.2 Example 2
3.3.25.4.3 Example 3
3.3.25.4.4 Example 4

ode internal name "first_order_ode_taylor_series_method_ordinary_point"             

Alternative method to solving the above example is given here which is to use the Taylor series method.  This is derived as follows.

Let

y=f(x,y)

Where f(x,y) is analytic at expansion point x0. We can always shift to x0=0 if x0 is not zero. So from now we assume x0=0. Assume also that y(x0)=y0. Using Taylor series

y(x)=y(x0)+(xx0)y(x0)+(xx0)22y(x0)+(xx0)33!y(x0)+=y0+xf+x22dfdx|x0,y0+x33!d2fdx2|x0,y0+=y0+n=0xn+1(n+1)!dnfdxn|x0,y0

But

(1)dfdx=fx+fyfd2fdx2=ddx(dfdx)(2)=x(dfdx)+y(dfdx)fd3fdx3=ddx(d2fdx2)(3)=x(d2fdx2)+(yd2fdx2)f

And so on. Hence if we name F0=f(x,y) then the above can be written as

(4)F0=f(x,y)Fn=ddx(Fn1)(5)=xFn1+(Fn1y)F0

For example, for n=1 we see that

F1=ddx(F0)=xF0+(F0y)F0=fx+fyf

Which is (1). And when n=2

F2=ddx(F1)=xF1+(F1y)F0=x(fx+fyf)+y(fx+fyf)f=x(dfdx)+y(dfdx)f

Which is (2) and so on. Therefore (4,5) can be used from now on along with

(6)y(x)=y0+n=0xn+1(n+1)!Fn|x0,y0

See below for examples.

3.3.25.4.1 Example 1

y+2xy=x

Solved using power series

Expansion is around x=0. The (homogeneous) ode has the form y+p(x)y=0. We see that p(x) is defined as is at x=0. Hence this is an ordinary point, also the RHS has series expansion at x=0. It is very important to check that the RHS has series expansion at x=0. Otherwise this method will fail and we must use Frobenius even if x=0 is ordinary point for the LHS of the ode. For example for the ode y+2xy=1x or y+2xy=x standard power series will fail. See examples below.

Using standard power series, let

y=n=0anxny=n=0nanxn1=n=1nanxn1

The ode now becomes

n=1nanxn1+2xn=0anxn=xn=1nanxn1+n=02anxn+1=x

Reindex so that all powers on x are n gives

n=0(n+1)an+1xn+n=12an1xn=x

For n=0, the RHS is zero, since there is no matching term with x0, therefore the above gives

a1=0

For n=1, the RHS is x1 which gives

(n+1)an+1+2an1=12a2+2a0=1a2=12a02

For n2 the RHS is zero and we have recurrence relation. Therefore we have

(n+1)an+1+2an1=0

For n=2

3a3+2a1=0a3=2a13=0

For n=3

4a4+2a2=0a4=12a2=12(12a02)=2a014

And so on. The solution is

y=n=0anxn=a0+a1x+a2x2+a3x3+=a0+(12a02)x2+(2a014)x4+=a0(1x2+12x4+)+(12x214x4+)

Which can be written as

y=y(0)(1x2+12x4+)+(12x214x4+)

Solved using Taylor series

y+2xy=xy=x2xy=f(x,y)

For this method to work, f(x,y) must be analytic at x=x0, the expansion point.  Let expansion point be x=0. Let y(0)=y0. Then

y=y(0)+n=0xn+1(n+1)!Fn(x,y)|x=0,y0

Where F0=f(x,y) and Fn=Fn1x+(Fn1y)F0. Hence

F0=(x2xy)F1=ddxF0=(F0x)+(F0y)F0=((x2xy)x)+((x2xy)y)(x2xy)=(12y)2x(x2xy)=4x2y2y2x2+1F2=d2dx2F1=(F1x)+(F1y)F0=(x(4x2y2y2x2+1))+(y4x2y2y2x2+1)(x2xy)=(8xy4x)+(4x22)(x2xy)=12xy8x3y6x+4x3F3=d3dx3F2=(F2x)+(F2y)F0=(x(12xy8x3y6x+4x3))+(y(12xy8x3y6x+4x3))(x2xy)=12y24x2y6+12x2+(12x8x3)(x2xy)=12y48x2y+16x4y+24x28x46

And so on. Evaluating the above at x=0,y=y0 gives

F0=0F1=2y0+1F2=0F3=12y06

Hence

y=y(0)+n=0xn+1(n+1)!Fn(x,y)|x=0,y0=y0+xF0+x22F1+x36F2+x424F3+=y0+0+x22(2y0+1)+0+x424(12y06)+=y02y0x22+x22+12y0x4x44+=y0(1x2+12x4)+x22x44+

3.3.25.4.2 Example 2 Solved using Taylor series

Another example using Taylor series method.

y+2xy=1+x+x2y=1+x+x22xy=f(x,y)

Let expansion point be x=0. Let y(0)=y0. Then

y=y(0)+n=0xn+1(n+1)!Fn(x,y)|x=0,y0

Where F0=f(x,y) and Fn=Fn1x+(Fn1y)F0. Hence

F0=1+x+x22xyF1=(F0x)+(F0y)F0=1+2x2y+(2x)(1+x+x22xy)=4x2y2y2x22x3+1F2=(F1x)+(F1y)F0=(8xy4x6x2)+(4x22)(x2xy)=12xy8x3y6x6x2+4x3F3=(F2x)+(F2y)F0=12y24x2y612x+12x2+(12x8x3)(1+x+x22xy)=12y48x2y+16x4y+24x2+4x38x48x56

And so on. Evaluating the above at x=0,y=y0 gives

F0=1F1=2y0+1F2=0F3=12y06

Hence

y=y(0)+n=0xn+1(n+1)!Fn(x,y)|x=0,y0=y0+F0x+F1x22+F2x36+F3x424+=y0+x+(2y0+1)x22+(12y06)x424+=y0(1x2+12x4+)+(x+12x214x4+)

3.3.25.4.3 Example 3 Solved using Taylor series

y+2xy2=1+x+x2y=1+x+x22xy2=f(x,y)

Let expansion point be x=0. Let y(0)=y0. Then

y=y(0)+n=0xn+1(n+1)!Fn(x,y)|x=0,y0

Where F0=f(x,y) and Fn=Fn1x+(Fn1y)F0. Hence

F0=1+x+x22xy2F1=(1+2x2y2)+(4xy)(1+x+x22xy2)=4x3y+8x2y34x2y4xy+2x2y2+1F2=(F1x)+(F1y)F0=(12x2y+16xy38xy4y+2)+(4x3+24x2y24x24x4y)(1+x+x22xy2)=4x5+32x4y28x448x3y4+32x3y212x3+32x2y216x2y8x2+24xy312xy4x8y+2F3=(F2x)+(F2y)F0

And so on. Evaluating the above at x=0,y=y0 gives

F0=1F1=2y02+1F2=8y0+2

Hence

y=y(0)+n=0xn+1(n+1)!Fn(x,y)|x=0,y0=y0+F0x+F1x22+F2x36+F3x424+=y0+x+(2y02+1)x22+(8y0+2)x36+=y0(143x3+)+y02(x2+)++(x+12x2+13x3+)

3.3.25.4.4 Example 4 Solved using power series

y+y=sinx

Expansion is around x=0. The (homogenous) ode has the form y+p(x)y=0. We see that p(x) is defined as is at x=0. Hence this is ordinary point, also the RHS has series expansion at x=0.

Let y=n=0anxn,y=n=0nanxn1=n=1nanxn1. The ode becomes

n=1nanxn1+n=0anxn=sinx

Indexing so all powers of x start at n gives

n=0(n+1)an+1xn+n=0anxn=sinx

Expanding sinx in series gives

n=0(n+1)an+1xn+n=0anxn=xx33!+x55!

For n=0, there is no term on RHS with x0, hence we obtain

a1+a0=0a1=a0

For n=1 there is one term x1 on RHS, hence

2a2+a1=1a2=1a12=1+a02

For n=2 there is no term on RHS with x2 hence

3a3+a2=0a3=a23=1+a023=16a016

For n=3 there is term 16x3 on RHS, hence

4a4+a3=16a4=16a34=16(16a016)4=124a0

And so on. The solution is

y=n=0anxn=a0+a1x+a2x2+=a0a0x+(1+a02)x2+(16a016)x3+(124a0)x4+=a0(1x+12x216x3+124x4)+(12x216x3+)