restart; with(MmaTranslator); #load the package FromMma(`Integrate[Cos[x],x]`);
Or
restart; with(MmaTranslator); #load the package convert(`Integrate[Cos[x],x]`, FromMma);
f:=proc() eq:=x*diff(y(x),x)+y(x)=exp(2*x); dsolve(eq,y(x)); end proc;
Then used the command stopat(f);
then called the procedure f();
and now the debugger
comes up. Did step
command and now it steps inside dsolve
Some examples
stopat(`ODEtools/symtest`); stopat(`ODEtools/test`); stopat(`ODEtools/normal/expanded`); stopat(`ODEtools/odepde`); stopat(`ODEtools/odeadv`); #for DEtools:-odeadvisor stopat(`odsolve/dAlembert`); stopat(`odsolve/dAlembert/integrate`); stopat(`odsolve/answer`); stopat(`odsolve/homogeneous`); #for all A,C,D,G types stopat(`odsolve/homogeneous_C/integrate`); stopat(`odsolve/exact`); #for solving exact ODE stopat(`odsolve/exact/integrate`); stopat(`odsolve/exact/integrate`(f,y,x,M,N)); #where f here is RHS of y'=RHS; DEtools:-symtest([-3,y],ode,y(x)); `ODEtools/normal/expanded`
For exact ode, can also do
ode:=....# write your ode here Student:-ODEs:-Solve:-Exact(ode,y(x),output=steps);
For integration use
infolevel[`evalf/int`]:=5;infolevel[int]:=5;
Another option
restart; interface(verboseproc=3) #(try 2 also)
then print(procedure);
or eval(procedure_name);
for example
restart: interface(verboseproc=3): print(LinearAlgebra:-GramSchmidt); print(lcm);
Also can use showstat, in this case interface(verboseproc=3)
is not needed. Also
showstat gives line numbers and I think it is easier to read. Some examples
showstat(`odsolve/2nd_order`) showstat(`evalf/hypergeom`); showstat(`evalf/exp/general`); showstat(`evalf/Psi`); showstat(`evalf/int`); showstat(`dsolve/SERIES`); #these 3 shows the main 3 functions by each solver showstat(`odeadv/dAlembert`); #used by advisor showstat(`odsolve/dAlembert`); # main API. showstat(`odsolve/dAlembert/integrate`); #used to integrate the ode showstat(`ODEtools/odeadv`); showstat(DEtools:-odeadvisor); showstat(`dsolve/series/froben/inhom`) showstat(`dsolve/series/froben`)
To stop at anyone of these functions in debugger do
stopat(`dsolve/series/froben/inhom`) #code here, say dsolve command.
The above will stop in the debugger in the above function.
There is also a function by Joe Riel here here is the post by Joe Riel:
"A disadvantage of showstat, particularly if you want to cut and paste the output, is that it includes line numbers. Here is a simple procedure I threw together to remove the line numbers."
PrintProc := proc(p::name,lines::{posint,posint..posint}) local width; option `Copyright (C) 2004 by Joseph S. Riel. All rights reserved.`; description "Print like showstat, but without line numbers"; width := interface('screenwidth'=200); try printf("%s", StringTools:-RegSubs( "\n ...." = "\n" ,debugopts('procdump'= `if`(nargs=1,p,[args])))) catch "procedure name expected": error "%1 is not a procedure name",p finally interface('screenwidth'=width) end try; NULL end:
To print source code to file using the above, do the following
currentdir("C:\\data"); interface('prettyprint'=1): interface('verboseproc'=3): writeto("listing.txt") PrintProc('singular'); writeto('terminal'):
Now the output will show up in the file "listing.txt" and also no line wrapping. The above I found is the best solution so far to do this.
trace(foo); untrace(foo);
also see debug(foo);
Also
infolevel[all]:=5: printlevel:=10:
See http://www.mapleprimes.com/questions/35951-How-To-Debugtrace-Things-In-Maple
Also look at kernelopts(opaquemodules=true)
Here is a useful post by Carl Love from Maple prime forum that summarizes all of these
Here are four things that you can do to get more information. I have listed them in order by how structured the information is, with the most structured first.
Set
infolevel[all]:= 5;
That will cause programs to print out additional information of the programmers’ choosing. You can use higher or lower numbers for more or less information. Most programs don’t use levels higher than 5.
Print the code of procedures with showstat:
showstat(int); showstat(sin); showstat(cos);
Trace the execution of particular procedures with trace:
trace(int); trace(sin);
Trace the execution of everything with printlevel:
printlevel:= 10000:
You can use higher or lower numbers for more or less information.
Some examples
interface(verboseproc=3); print(DEtools) print(`ODEtools/symgen`); print(`symgen/methods`); print(`symgen/do`);
To stop the debugger at symgen do
stopat(`ODEtools/symgen`);
To get infolevel on symgen do
infolevel[`symgen`]:=5;
Or to see line numbers
interface(verboseproc=3); showstat(dsolve)
Or can use the Browse();
command
with(LibraryTools); Browse();
Another option I found is
s:=debugopts(procdump=`showstat`);
Then the above produces listing that can be copied as string with line wrapping ok.
One way
L:=[]: for i from 1 to 3 do : L:=[op(L),i]; end do;
But a better way is to use seq
if one knows the length
L:=[seq(i,i=1..3)]; L := [1, 2, 3]
Since list is unmutable, a more efficient method, for long lists, is to use Array, and then convert the result back to list at the end since Array can grow dynamically without preallocation each time something is inserted as follows
L:=Array(): for i from 1 to 3 do : L(i):=i; end do; for i from 1 to numelems(L) do : print(L[i]); end do; L := convert(L,list)
Which wil print
L := [1] L := [1, 2] L := [1, 2, 3] 1 2 3 L := [1, 2, 3]
Notice that to add to an Array, ()
is used. But to access an entry in an array []
is
used.
And finally, using Array also, it can be done without using any indexing as follows
L:=Array(1..0): for i from 1 to 3 do : L ,= i; end do; L := convert(L,list)
For the above to work, the array must be declared using Array(1..0)
. The new syntax
A ,= i
will append to the array, and there is no need to write A(i) := i
By Carol Devore on the net:
Use infolevel. For example, to show what logic dsolve uses, do this: First try > infolevel[all]:= 5; That will probably give more information than you want, but if not, then try > printlevel:= 1000; If you want information about a specific procedure, you can use debug. For example, restart; debug(`int/int`); int(p, x= 0..1); To find out what procedures are being called without getting too much extra information, use excallgraph.
Trying on dsolve
infolevel[dsolve]:= 3; dsolve({eq1},y(x)); Methods for second order ODEs: Trying to isolate the derivative d^2y/dx^2... Successful isolation of d^2y/dx^2 --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] <- double symmetry of the form [xi=0, eta=F(x)] successful
Here, I am looking at fouries series expansion of \(f(x)=0\) between \(–\pi \) and 0, and \(f(x)=1\) between 0 and \(\pi \).
The Fouries series expansion is worked out to be as below. This shows that the series approximate the above \(f(x)\) as more terms are added
restart; f:=(x)-> 1/2 + (1/Pi)*(sin(x)+sin(3*x)/3+sin(5*x)/5+sin(7*x)/7); plot(f(x),x=-10..10);
From DOS, point to where your cmaple is
>"C:\Program Files\Maple 7\BIN.WNT\"cmaple
To make it execute maple commands use the < foo.txt
to pipe maple commands in the file
to it.
A:= Matrix( [ [1, 2, 3] , [3, 6, 7] , [5, 6, 9] , [7, 7, 7] ]); whattype(A); Matrix size:=LinearAlgebra:-Dimension(A); size := 4, 3 row:=size[1]; row := 4 col:=size[2]; col := 3
You can extract any part of the matrix like this:
B:=A[1..3,2..2];
By Carl Devore http://mathforum.org/kb/message.jspa?messageID=1570678
Maple list and sequence structures are more flexible than Matrices, which are highly structured. A Maple list of lists (called a listlist in Maplese) is akin to a matrix in some other languages. Many matrix operations can be performed directly on the listlist form, but to do serious linear algebra, you should convert to a Matrix. Of course, it is trivial to convert a listlist to Matrix: LL:= [[1,2], [3,4]]; M:= Matrix(LL); So here is another solution in line with your original wishes. This is "index free", but the table-based solution I gave earlier should be faster. (It is usually considered bad form to repeatedly append to a list or sequence.) L:= [][]; # Create a NULL sequence do line:= readline(file); if line::string then if line contains valid data then Z:= a list of that data; L:= L, Z fi else break fi od A:= Matrix([L]); # Note []: seq -> list.
To move move a column into a matrix: Here, I want to copy 2nd column to the 3rd column:
A;
B:=A[1..row,2];
A[1..row,3]:=B: A;
Maple can return multiple values. Make sure to use the comma "," in the body of the procedure to separate each return value. Example:
size_matrix:=proc(x) 3*x, 4*x; end proc; row,col :=size_matrix(5);
When passing a variable to maple procesure, the variable VALUE is passed to the procedure (This is different from say Fortran where the default is pass by reference). But this is the same as with Mathematica.
For example, if a variable X had value 10, then you call a procedure FOO passing
it X, then inside FOO, X will be the number 10, not the argument variable X.
So, this means one can not have X on the left hand side inside FOO. Like this
x:=1
The only way to assign new value to the input and return new value, is to use a local variable, like this:
one:= proc(x) local y; print(x); y:=x+ 1; print(x); y; end proc; z:='z'; z:=5; f:=one(z); f := 6
Use `type/name`
to define new type name.
`type/char`:= x-> x::string and length(x)=1; P:= proc(c::char) print(c) end proc: P("x"); "x" P("xy"); Error, invalid input: P expects its 1st argument, c, to be of type char, but received xy > `type/byte`:= x-> x::integer and (x>= 0 and x<256); #will define a byte (unsigned integer)
Code from net by Carl Devore:
MMax:= proc(M::{Matrix,matrix}) local C,r,c,mx,L,p; C:= op(`if`(M::Matrix, [1,2], [2,2,2]), eval(M)); L:= map(op, convert(M, listlist)); mx:= max(L[]); member(mx,L,'p'); r:= iquo(p, C, 'c'); mx, `if`(c=0, [r,C], [r+1,c]) end;
Code below from C W
A:=matrix(12,12,rand(100)); Ao:=array((proc(E) local i; [seq(i=(rhs=lhs)(E[i]),i=1..nops(E))]end) (sort(op(3,eval(A)),proc(E1,E2) if rhs(E1)>rhs(E2) then true else false fi end))); Ao[1];
First create the module:
restart; nma:= module() option package; export getMaxMatrix; getMaxMatrix := proc (M::{matrix, Matrix}) local C, r, c, mx, L, p; C := op(`if`(M::Matrix,[1, 2],[2,2,2]),eval(M)); L := map(op,convert(M,listlist)); mx := max(L[]); member(mx,L,'p'); r := iquo(p,C,'c'); mx, `if`(c = 0,[r, C],[r+1, c]) end proc; end module; A:= Matrix( [ [1, 2, 3] , [3, 6, 7] , [5, 6, 9] , [7, 7, 7] ]); nma[getMaxMatrix](A);|
Gives 9, [3, 3]
. Now save the module.
savelibname := "C:/MAPLE_PACKAES"; march('create', savelibname, 20);
now save the library to disk. savelib(nma);
Now we can test everything by reinitialize everything and reload the library.
>restart #Add my library to LIBNAME >libname:="C:/MAPLE_PACKAGES",libname; > A:=matrix( [ [1,2,3],[4,6,9] ]); >with(nma); >nma[getMaxMatrix](A);
Now to print a proc() in the package, do
>interface(verboseproc=3); > print(nma[getMaxMatrix]);
Now you can list what packages exist in the archive:
march('list',savelibname); march('extract',savelibname,":-1.m","C:MAPLE_PACKAGES/t.m")
Some notes. need to clean later
> module1lib:=`module1\\lib`; > system("md "||module1lib); > march('create',module1lib,100); > makehelp(module1,`module1/module1.mws`,module1lib): > makehelp(`module1/export1`,`module1/export1.mws`,module1lib): > savelibname:=module1lib: ### doesn't affect current libname > savelib(module1); ### no error message > restart; > module1lib:="module1\\lib": > libname:=module1lib,libname; ### now Maple will find module1 > with(module1); > ?module1
Also there is a long thread here on Maple prime on making personal packages in Maple How-To-Create-A-Personal-Package
From: Robert Israel (israel@math.ubc.ca) Subject: Re: Getting non-integral results in hex Newsgroups: comp.soft-sys.math.maple Date: 2003-06-13 00:07:37 PST I assume you mean floating-point numbers. Note that Maple floats (as opposed to "hardware floats") are in fact stored in base 10. To convert a float to hex with n digits after the ".", you can use this: > `convert/hexfloat`:= proc(x::numeric, n::nonnegint) local A,B,ax,R; if nargs = 1 then return procname(x,round(Digits*log[16](10))) fi; if x = 0 then return cat(`0.`,`0`$n) fi; ax:= abs(x); A:= floor(ax); B:= round(frac(ax)*16^n); if B = 16^n then A:= A+1; B:= 0 fi; R:= cat(convert(A,hex),`.`); if x < 0 then R:= cat(`-`,R) fi; cat(R,substring(convert(16^n+B,hex),2..-1)); end; And then, e.g.: > convert(1234.5678, hexfloat, 4); 4D2.915B
mtaylor(sin(x),[x],10);
restart; a:=Matrix([ [2,3,4],[4,5,6] ]); nRow,nCol :=LinearAlgebra[Dimension](a); for i from 1 to nRow do for j from 1 to nCol do printf("a(%d,%d)=%d\n",i,j,a[i,j]); end do; end do; a(1,1)=2 a(1,2)=3 a(1,3)=4 a(2,1)=4 a(2,2)=5 a(2,3)=6
restart; a:=Matrix([ [2,4],[5,7] ]); LinearAlgebra:-Determinant(a); -6
H := LinearAlgebra:-HilbertMatrix(5);
Matlab is much easier here. In maple, need to covert the matrix to a list of list of points first.
restart; H := LinearAlgebra:-HilbertMatrix(5): nRow,nCol :=LinearAlgebra[Dimension](H): L:=[seq([seq( [i,j,H[i,j]], i=1..nRow) ], j=1..nCol)]: plots:-surfdata(L);
An error in maple raises an exception. So, use try catch to trap it as follows:
try v,pos:=MMax(4); catch: printf("an error is cought\n"); end try;
From the net, by Carl Devor:
`print/commas`:= proc(N::integer) local n,s,i,b; n:= ListTools:-Reverse(convert(abs(N), base, 1000)); if N<0 then n:= subsop(1= -n[1], n) fi; nprintf("%s", sprintf(cat("%d", ",%03d" $ nops(n)-1), n[])) end proc: commas(456554); 456,554
To convert a string to array of chars use array(StringTools:-Explode(S))
s:="Nasser M. Abbasi": r:=array(StringTools:-Explode(s)); r:=["N" "a" "s" .......]
Now can use the string as normal array
r[4]; "s"
Units[GetDimensions](base); amount_of_information, amount_of_substance, currency, electric_current, length, logarithmic_gain, luminous_intensity, mass, thermodynamic_temperature, time
Use the Sum command.
restart; expr:= (-1)^i/(2*i+1)^2; Sum(expr,i=0..infinity); evalf(%,50); 0.91596559417721901505460351493238411077414937428167
Notice, if I used the sum command instead of the Sum command I get this result:
sum(expr,i=0..infinity); Catalan
This shows how to do a simple package and use it without building a library. Just using a plain text file.
Create this nma_pkg1.txt
file:
nma_pkg1 := module() export f1; option package; f1:= proc() print("in pakcage nma_pkg1"); end proc; end module;
now save it, and from maple do
>read("c:\\nma_pkg1.txt");
now execute f1() as this:
>nma_pkg1[f1](); "in pakcage nma_pkg1"
now put it in a library (so that we can use with, instead of read)
> savelibname:=("c:/maple"); > march('create', savelibname, 20); > savelib(nma_pkg1); >restart; > libname := "c:/maple",libname; > with(nma_pkg1); > f1(); "in pakcage nma_pkg1"
now make changes to the nma_pkg1.txt
file and updated again as above.
?index,package
restart; f:=3*x^2 + y* cos(x*y); the_grad :=linalg[grad](f,[x,y]); plots[fieldplot](the_grad,x=-2..2,y=-2..2);
or
or can do it in just one command: plots[gradplot](f,x=-2..2,y=-2..2);
Suppose you want the 100 digits of Pi put in a list. This is one way to do it:
restart; L:=evalf(Pi,100); S:=convert(L,string); the_list:=[seq(parse(S[i]),i=3..length(S))]; the_list := [1, 4, 1, 5, 9, 2, 6, 5, 3, ..
This below now tells how many times each digits occurs.
>stats[transform,tally](the_list); [Weight(0, 8), Weight(1, 8), Weight(2, 12), Weight(3, 11), Weight(4, 10), Weight(5, 8), Weight(6, 9), Weight(7, 7), Weight(8, 13), Weight(9, 13)]
Written sometime in 2005? I should really record the time when I write something.
I just run these now, Auust 2014, and now Maple 18 as very fast. So this all below is no longer valid. I will leave it here for now for reference until I update it all later
I have written a few lines of code, which counts how many times each digit occurs after the decimal points of \(\pi \)
Written this in maple first. Then did similar thin in mma 5.0. Both are run on the same PC. No other applications are running at the time when I run the code.
The basic idea of the algorithm is to use evalf(Pi,digits)
in maple to find \(\pi \) for any
number of decimal digits, and to use N[Pi,digits]
in mma for doing the same. (Where the
variable digits above is the number of digits)
Then in maple convert the above \(\pi \) to a string, and generate a sequence of the characters
to right of decimal point, then use stats[transform,tally]
to do the actual
counting.
In mma, I use RealDigits[]
to get a list of the digits, and then use Count[]
to do the
counting.
This is result of some of the runs to find Pi to some digits, and the total time (to find Pi and do the counting)
All times are in cpu seconds, machine is P4, 2.8 Ghz, 500 MB of RAM, single CPU, hyperthreading enabled, running XP home edition. Maple 9.03 student version, and mma 5.0 student version.
Below is the result, and below that I show the maple code and the mma code.
Because of this, before each run in mma, I exited the application and started it fresh. In maple, it does not matter for the above reason.
100,000 digits: Find_Pi Total Maple 9.0 55 84 Mma 5.0 0.9 1.54
Mma is 60 times faster in finding pi and about 56 times faster overall
300,000 digits: Find_Pi Total Maple 9.0 309 781 Mma 5.0 3.7 6
Mma is 300 times faster in finding Pi, and 130 times faster overall.
3,000,000 digits Find_Pi Total Maple 9.0 Mma 5.0 85 118 Maple time in hours ! Still running.
Maple code
> restart; startingTime :=time(); L:=evalf(Pi,100000): timeToFindPiInSecs:=time()-startingTime; S:=convert(L,string): the_list:=[seq(parse(S[i]),i=3..length(S))]: stats[transform,tally](the_list); endingTime :=time(): cpuTimeInSecs := endingTime - startingTime;
mma code
Clear[] startingTime=TimeUsed[] t1=N[Pi,100000]; timeToFindPiInSecs=TimeUsed[]-startingTime {c,d}=RealDigits[t1]; theList=c[[Range[2,Length[c]]]]; f[digit_]:=Count[theList,digit]; r=Range[0,9]; Map[f,r] cpuTimeInSecs=TimeUsed[]-startingTime
update 12/25/03 Changed maple code on how to do the counting : To use
StringTools[CharacterFrequencies](S)
Now the counting in maple is much faster. It is always hard to know which is the best function to use.
restart; startingTime :=time(); L:=evalf(Pi,300000): timeToFindPiInSecs:=time()-startingTime; S:=convert(L,string): StringTools[CharacterFrequencies](S); endingTime :=time(): cpuTimeInSecs := endingTime - startingTime;
From: Ken Lin (maplemath@tp.edu.tw) Subject: Re: how to find which package a function belongs to? Newsgroups: comp.soft-sys.math.maple Date: 2003-12-04 03:49:26 PST When Maple first loaded, There are only two kinds of "internal" commands which can be called directly. One is the "kernal" commands coded in C, and the other includes many "internal" prodecures programmed by the kernal commands which lies in the "Main Library", There are also many other "external" procedures which were categorized into so called "packages", plots[display](...) for example, plots[] is a package(Library), and display() is the prodecure inside plots[]. All the packages can be loaded by with() command, like > with(plots); Because Different Packages include user library might have the same procedure name, Maple doesn't realize the "procedure_name" you type in, it took it for a "symbol". If you really want to know which packages provided by Maple the external procedure lies in, just mark the procedure_name and press F1 key, the Maple Help Browser will show you the packages you might be interested. By the way, plot3d() is a "internal" procedure lies in the Main Library. You can confirm that by: > op(0, eval(plot3d)); procedure or in Maple 9 > type( plot3d, 'std' ); #Is it internal? true > type( plot3d, 'stdlib' ); #Does is lie in "Standard(Main) Library"? true If you are interested the codes inside plot3d()... > interface(verboseproc=2): #Turn on verboseproc > print(plot3d); #eval() also works > interface(verboseproc=1): #Turn off verboseproc I hope this will give you some help. Have fun with Maple. Ken Lin
restart; f:= t->sin(omega*t) ; L:=convert(inttrans[laplace](f(t),t,s),int);
To find the inverse, do:
inttrans[invlaplace](L,s,t);
For unit step, use
_EnvUseHeavisideAsUnitStep:=true; f:=Heaviside(t-a); INV:=inttrans:-laplace(f,t,s) assuming a>0; #make sure to use a>0
Another example
_EnvUseHeavisideAsUnitStep:=true; f:=Heaviside(t)-Heaviside(t-a); INV:=inttrans:-laplace(f,t,s) assuming a>0; #make sure to use a>0
Any difference between using `diffalg/Rosenfeld_Groebner`(args) or diffalg[Rosenfeld_Groebner](args)
restart; f:= (x,y)->x^3-3*x*y^2; plot3d(f,-1..1,-1..1,numpoints=2500,style=patchcontour);
Use map
map(`^`,{1,2,3},3); {1, 8, 27}
incr:=.25; start:=0; last:=3; seq(start+i*incr,i=1..(last/incr));
read ?MVshortcut, ?MVassignment, and ?Mvextract
and Transpose(R) can be shortened
to R^%T
Written feb 20, 2004
This is problem 7.4 chapter 4, in the Mary Boas book. Given
Find \(\frac {dx}{dt}, \frac {dx}{ds}, \frac {dy}{dt}, \frac {dy}{ds}\) at \(x=1,y=-3,s=2,t=-1\)
This is how I did it in maple:
restart; alias(x=x(s,t)); alias(y=y(s,t)); alias(Xt= diff(x(s,t), t)); alias(Xs= diff(x(s,t), s)); alias(Yt= diff(y(s,t), t)); alias(Ys= diff(y(s,t), s)); eq1:= x*s^2+y*t^2=1; eq2:= x^2*s+y^2*t=x*y-4; r1:=diff(eq1,t); r2:=diff(eq1,s); r3:=diff(eq2,t); r4:=diff(eq2,s); sol:=solve({r1,r2,r3,r4},{Xt,Xs,Yt,Ys});
points:= {x=1,y=-3,s=2,t=-1}; subs(points,sol);
This is problem 7.15 chapter 4 in Boas:
Given \(x^2 u-y^2 v=1\) and \(x+y=uv\) Find \(\frac {dx}{du},v\) and \(\frac {dx}{du},y\)
This is the maple code to solve this:
restart; eq1:=x^2*u-y^2*v=1; eq2:=x+y=u*v; r1:=D(eq1); r2:=D(eq2); r1_:=subs(D(v)=0,r1); r2_:=subs(D(v)=0,r2); sol:=solve({r1_,r2_},{D(x),D(u)}); print("dx/du,v="); rhs(sol[1])/rhs(sol[2]); r1_:=subs(D(y)=0,r1); r2_:=subs(D(y)=0,r2); sol:=solve({r1_,r2_},{D(x),D(u)}); print("dx/du,y="); rhs(sol[1])/rhs(sol[2]);
by http://www.math.fsu.edu/~bellenot
restart; t2 := proc(i, x, y) if i < 2 then [[x, y], [x, y - 1]], [[x, y], [x + 2^i, y - 1]] else [[x, y], [x, y - 1]], [[x, y], [x + 2^i, y - 1]], t2(i - 1, x, y - 1), t2(i - 1, x + 2^i, y - 1) end if end proc; PLOT(CURVES(t2(6,0,0)));
restart; z:= Int( sin(t)/t, t=sin(x)..cos(x)); diff(z,x);
restart; c:='c': C:='C': n:='n': P:='P': C := n -> ((n+2)/(3*n+1))^n: ### WARNING: calls to `C` for generating C code should be replaced by codegen[C] `The general term is `, c[n]= C(n); ` `; `The n-th root is:`; ### WARNING: calls to `C` for generating C code should be replaced by codegen[C] P := C(n)^(1/n): abs(c[n])^(1/n) = P; P := simplify(P, assume=positive): abs(c[n])^(1/n) = P;
restart; f:= 1/( (1-2*z)*(5*z-4) ); residue(f,z=4/5);
_EnvAllSolutions:=true; solve(sin(x)=0);
Pi _Z1~
Subject: Associated Legendre Author: Mehran Basti <Basti@worldnet.att.net> Organization: AT&T Worldnet Date: Mon, 25 Nov 2002 02:48:15 GMT Dear newsgroup: I had mentioned that my methods will solve classical equations without the use of infinite series. The following is a Maple code of my old files. Those days I had Maple2 but the general idea is the same in the process and you see that we can also solve the integrals involved. It does not make sense how are the theory behind it but eventually it will come into light. Just read the procedures and you can see the solution of associated legendre AL at the end. > s1:=-diff(p(t),t)+p(t)^2; > > s2:=exp(2*int(p(t),t))*T(t); > s3:=s1+s2; > s4:=diff(T(t),t)/T(t); > s5:=-(1/2)*(diff(s4,t))+(1/4)*s4^2; > s6:=s5+s2; > p(t):=-1/t+(1)/(2-t); > s1:=simplify(s1); > s1:=collect(%,t); > s2:=simplify(s2); > s1+s2=(2*t^2-4*t+m^2-1)/(t*(-2+t))^2; > solve(%,T(t)); > T(t):=simplify(%); > s2:=simplify(s2); > s2+s1; > s3:=simplify(%); > > s6:=simplify(s6); > t*(-2+t); > simplify(%); > z:=(r3*t^3+r2*t^2+r1*t+r0)/(%); > > simplify(diff(z,t)+z^2-s6); > s7:=collect(numer(%),t); > > coeff(%,t,0); > solve(%,r0); > r0:=op(1,{%}); > coeff(s7,t,1); > solve(%,r1); > r1:=simplify(%); > coeff(s7,t,2); > solve(%,r2); > r2:=simplify(%); > coeff(s7,t,3); > solve(%,r3); > r3:=simplify(%); > simplify(s7); > s3:=simplify(s3); > s4:=simplify(s4); > s6:=simplify(s6); > T(t):=simplify(T(t)); > z:=simplify(z); > 1/2*s4+2*p(t)+z; > s8:=simplify(%); > exp(int(%,t)); > expand(%); > g:=(%); > simplify(g,power); > g:=%; > Int(%,t); > Integralg:=(%); > int(g1(t),t); > x1:=-p(t)+g1(t)/(%); > diff(x1,t)+x1^2-s3; > simplify(%); > s10:=numer(%); > solve(%,int(g1(t),t)); > Ing:=(%); > simplify(subs(g1(t)=g,%)); > > Ing:=(%); > expand(%); > Ing:=simplify(%); > simplify(diff(%,t)-g); > expand(%); > simplify(%); > x:=-p(t)+g/Ing; > simplify(diff(x,t)+x^2-s3); > int(x,t); > exp(%); > expand(%); > s11:=simplify(%); > ALT:=t*(2-t)*diff(u(t),t$2)+2*(1-t)*diff(u(t),t)+(2-m^2/(1-(1-t)^2))*u(t); > -2*(1-t)/(2*t*(2-t)); > int(%,t); > exp(%); > s12:=simplify(%,power); > > u1:=s12*s11; > u1:=simplify(%,power); > simplify(subs(u(t)=u1,ALT)); > AL:=(1-nu^2)*diff(u(nu),nu$2)-2*nu*diff(u(nu),nu)+(2-m^2/(1-nu^2))*u(nu); > > u2:=subs(t=1-nu,u1); > simplify(subs(u(nu)=u2,AL)); > The advantage of these methods are that there are ample rooms for advances. Today my skills for solving classical equations such as Riccati is much advanced. Highly complicated and more general Riccati equations in its billions now possible. Sincerely Dr.M.Basti
To plot mapping of complex function in maple, use [plots]conformal
The trick is to how
to specify the quadrant in the x-y plane. This example shows how.
Suppose we want to map the first quadrent. Then we specify the DIAGONAL points in the
range, from the lower left corner to the upper right corner, which then should be 0..1+I
Because 0 is the lower left corner, and \((1,i)\) is the upper right corner. Example:
restart; assume(y,real); assume(x,real); #f:= z->I+z*exp(I*Pi/4); f:= z->z^2; w:=f(x+I*y); u:=Re(w); v:=Im(w); plots:-conformal(f(z),z=0..1+I,grid=[16,16],numxy=[16,16],scaling=constrained);
This below uses the first TWO quadents, i.e. the upper half of the x-y plane
restart; assume(y,real); assume(x,real); #f:= z->I+z*exp(I*Pi/4); f:= z->z^2; w:=f(x+I*y); u:=Re(w); v:=Im(w); plots:-conformal(f(z),z=-1-I..1+I,grid=[16,16],numxy=[16,16],scaling=constrained);
This below puts the plots next to each others so to see them
restart; assume(y,real); assume(x,real); f:= z->I+z*exp(I*Pi/4); #f:= z->z^2; w:=f(x+I*y); u:=Re(w); v:=Im(w); A := array(1..2): A[1]:=plots:-conformal(z,z=0..1+I/2,grid=[16,16],numxy=[16,16],scaling=constrained): A[2]:=plots:-conformal(f(z),z=0..1+I/2,grid=[16,16],numxy=[16,16],scaling=constrained): plots:-display(A);
interface(showassumed=0)
removes all tildas and interface(showassumed=1)
adds the
tildas.
I wrote this to generate FS in Maple for some HW I was doing. I think this was for Math 121A at UC Berkeley in 2003
restart; f:=x->piecewise(-Pi<x and x<Pi/2,-1, Pi/2<x and x<1,0,1); assume(n,integer); nmaFourier2:=proc(f,freq,from_,to_,maxN) local n::integer,denomC,denomS,a,b; denomC:=( to_ - from_ ) / 2; denomS:=( to_ - from_ ) / 2; a:=proc(n) int(f(x)*cos(n*freq*x),x=from_..to_) /denomC; end proc; b:=proc(n) int(f(x)*sin(n*freq*x),x=from_..to_) / denomS; end proc; evalf(denomC); 1/2*a(0) + sum( a(n) * cos(n*freq*x) ,n=1..maxN) + sum( b(n) * sin(n*freq*x) ,n=1..maxN) end proc; r:=[seq(nmaFourier2(f,1,-Pi,Pi,nIter),nIter=1..10)]; plot(r,x=-Pi..Pi);
To animate do
g:=n->plot(nmaFourier2(f,1,-Pi,Pi,n),x=-2*Pi..2*Pi); plots:-animate(g,[n],n=1..40);
Here is the animation from the Maple notebook:
Another version
restart; f:=x->piecewise(-Pi<x and x<Pi/2,-1, Pi/2<x and x<1,0,1); assume(n,integer); nmaFourier2:=proc(f,freq,from_,to_,maxN::integer) local n::integer,denomC,denomS,a,b; denomC:=( to_ - from_ ) / 2; denomS:=( to_ - from_ ) / 2; a:=proc(n) int(f(x)*cos(n*freq*x),x=from_..to_) /denomC; end proc; b:=proc(n) int(f(x)*sin(n*freq*x),x=from_..to_) / denomS; end proc; 1/2*a(0) + sum( a(n) * cos(n*freq*x) ,n=1..maxN) + sum( b(n) * sin(n*freq*x) ,n=1..maxN) end proc; plots[setoptions](title=` `, axesfont=[SYMBOL,8] ,font=[COURIER,1], xtickmarks=[seq(evalf(k*Pi/2)=sprintf("%a %s", k/2 ,"pi" ),k= -3..3)], ytickmarks=[-1.0="-1",-0.5="",0.0="0",0.5="",1.0="1"]); B:=array(1..3,1..3); k:=0; for i from 1 to 3 do for j from 1 to 3 do k:=k+1; B[i,j]:=plot({f(x),nmaFourier2(f,1,-Pi,Pi,k)},x=-Pi..Pi,size=[200,100]); end do; end do; plots:-display( B);
restart; v:=1; B:=Matrix(3,3); for i from 1 to 3 do for j from 1 to 3 do v:=v+1; B[i,j]:= plot(x^v,x=-2..2,thickness=3,size=[200,100] ); end do; end do; plots:-display(B);
From book Maple animation by John Putz
plot( sin(x), x=0..2*Pi, xtickmarks=evalf([Pi/2="p/2", Pi="p", 3*Pi/2="3p/2", 2*Pi="2p"]), ytickmarks=[-1,1], axesfont=[SYMBOL,16], labels=["",""] );
From Preben Alsholm
res:=FunctionAdvisor(sin): res2:=op(2,eval(res)): map(print,res2);
or answer by Thomas Richard
> FunctionAdvisor( display, sin );
Use convert(expr,parfrac)
or convert(f,fullparfrac)
n := 7; f:=sum('a[k]*b[k]','k'=1..n);
from Serge from the net:
restart; with(geom3d): plane(OYZ,x=0,[x,y,z]): plane(OXZ,y=0,[x,y,z]): plane(OXY,z=0,[x,y,z]): c:=1/2:r:=1/4: L:=combinat[permute]([-c$3,c$3],3): S:=seq(sphere(s||i,[point(A||i,op(op(i,L))),r]),i=1..8): draw([OYZ,OXZ,OXY,S]);
Use evalb(). For example evalb(I*sinh(x)=sin(I*x));
gives true
The above does not always work. Only sure way is to do this
> m1 := exp(I*n*x); m2 := (cos(n*x)+I*sin(n*x)); simplify(m1-m2); simplify(m1-convert(m2,exp));
Function by Robert Israel from the net:
restart; thefacts:= [seq(i!,i=2..20)]: getfacts:= proc(x::{algebraic,series}) local i; if type(x, {`+`,`*`,series}) then map(getfacts,x) elif type(x, fraction) then getfacts(numer(x))/getfacts(denom(x)) elif type(x,`^`) then getfacts(op(1,x))^op(2,x) elif type(x,negint) then -getfacts(-x) elif type(x,posint) then for i from 1 to 19 while irem(x, thefacts[i]) = 0 do od: if i = 1 then x elif thefacts[i-1] = x then ``(i)! else ``(i-1)!*getfacts(x/thefacts[i]) fi else x fi end; getfacts(series(sin(x),x));
?updates,maple10
Maple 2020.
restart; PDE := diff(u(x,y), y$2 ) + diff(u(x,y), x$2) = 0; BC:= u(x,0)=0, u(x,100)=100, u(0,y)=0, u(10,y)=0; sol:=pdsolve(PDE,[BC] ,numeric); Error, (in pdsolve/numeric) unable to handle elliptic PDEs
Compare to
restart; PDE := diff(u(x,y), y$2 ) + diff(u(x,y), x$2) = 0; BC:= u(x,0)=0, u(x,100)=100, u(0,y)=0, u(10,y)=0; sol:=pdsolve([PDE,BC]);
Create a new matrix, by appending some rows of one matrix to rows from another matrix:
restart; with(LinearAlgebra): A:=< <1|2|3> , <4|5|6> >;
B:=< <7|8|10> , <11|12|13> , <14|15|16> >;
Now append first row of A to last 2 rows of B
C:=< A[1,1..-1] , B[2..-1,1..-1] >;
# Now append first column of A to first 2 rows of B A[1..-1,1]; B[1..2,1..-1]; C:=< A[1..-1,1] | B[1..2,1..-1] >;
#Now remove the middle row of B B; B:=<B[1,1..-1] , B[-1,1..-1] >;
#now set the diagonal elements of B to be 0 B:=RandomMatrix(3); for i from 1 to 3 do B[i,i]:=0; end do: B;
To find inverse.
restart; with(LinearAlgebra): A:=Matrix( [ [2,0],[4,2] ]); MatrixInverse(A);
To check that for any matrix A, then A*transpose(A)
is always a matrix which is
symmetrical
A:=RandomMatrix(2,3); A.Transpose(A);
how to create a random lower triangular matrix?
restart; with(LinearAlgebra); A:=RandomMatrix(4,4,outputoptions=[shape=triangular[lower]]);
restart; with(LinearAlgebra); A:=RandomMatrix(5); LinearAlgebra:-Map[(i,j)->evalb(i=j)](x->1,A);
eq:=3*x^3+2*x^2+x+5=0; s:=[evalf(solve(eq,x))]; mul(s[i],i=1..nops(s));
Gives
restart; eq:=3*x+4*y+2*z=10; plot3d(solve(eq,z),x=-5..5,y=-5..5,axes=normal);
One can also use impliticplot3d
restart; with(plots): implicitplot3d(3*x+4*y+2*z=10, x=-5..5,y=-5..5, z=-20..20,axes=normal);
From http://www.mapleprimes.com/questions/40470-Trigonometric-Function-To-Sinc-Function
Maple doesn’t have a sinc function. If you mean the function sinc(x) = sin(x)/x, you could say something like
> eval(expr, {sin = (x -> x*sinc(x)), cos = (x -> (x+Pi/2)*sinc(x+Pi/2)), tan = (x -> x*sinc(x)/(x+Pi/2)/sinc(x+Pi/2))});
restart; with(LinearAlgebra): A:=Matrix([[1,0,1,0,1],[0,1,0,1,0]]); NullSpace(A); ColumnSpace(A);
Go to tools->optiopn
, and Display, and select Maple notation for input display.
solve(x^2-sin(x),x); RootOf(-sin(_Z)+_Z^2) allvalues(%); RootOf(-sin(_Z)+_Z^2, 0.), RootOf(-sin(_Z)+_Z^2, .8767262154) evalf(%); 0., .8767262154
Use Map with filter
A:=< 1,2,3;4,5,6;7,8,9>; LinearAlgebra:-Map[(i,j)->evalb(i=j)](x->x+1,A);
Go to http://www.maplesoft.com/support/help/search.aspx
and type say updates,Maple17,DE
in the small box there.
From http://www.mapleprimes.com/questions/201092-How-To-Insert-New-Paragraph-On-Its-Own by Carl Love:
I use these special keystrokes constantly in my Maple worksheet typing: Ctrl-J: Insert execution group below cursor. Ctrl-K: Insert execution group above cursor. Ctrl-T: Switch from executable code mode to text mode (for entering extended formatted comments). Ctrl-M: Switch from text mode to executable code mode. Shift-Enter (or Shift-Return): Begin a new line in the same execution group. Func-3: Split execution group into two (at cursor). Func-4: Join cursor execution group with execution group below.
Use the read command, as in read "mycode.mpl"
where mycode.mpl
is plain text file that
contains maple code
New packages are module, which allows using packageName:-function()
since it is easier.
Old packages use tables which needs packageName[function]()
which is not
common.
To find if package is based on module or not, use the command
type(combstruct,'`module`');
This will return true or false. To know if name is package use the command
type(combstruct,'package');
file_name :=StringTools:-SubstituteAll(file_name,":","-");
restart; c:= i->([i/(1+i),0],1/(1+i)): d:= i->([1,1/i],1/i): geometry:-circle(c1,[geometry:-point(o,2/3,0),1/3],[x,y]): geometry:-circle(c2,[geometry:-point(o,1,1),1],[x,y]): geometry:-intersection(o,c1,c2,[u,v]): plots:-display(plottools:-circle(c(2)),plottools:-circle(d(1)),geometry:-draw(o));
To know more about the intersection, use this:
geometry:-detail(o);
Use symbolic option
restart; simplify(ln(3^x/2^y) =ln(n),symbolic);
How to convert
to
restart; e := (3+2*sinh(x)^2)/(sinh(x)^2*tanh(x)); expand(student[changevar](sinh(x)^2=tanh(x)^2/(1-tanh(x)^2),e));
restart; try fd :=-1; fd := fopen("C:\\output3.txt",APPEND,TEXT); catch: print(`Unable to open file, error is`); print(StringTools:-FormatMessage(lastexception[2])); end try: if not(evalb(fd=-1)) then #file open ok str:="hello world"; try fprintf(fd,"%s\n",str); catch: print(`failed to append to file, error is`); print(StringTools:-FormatMessage(lastexception[2])); finally: close(fd); end try; fi:
To find in which library a command is do
with(LibraryTools); FindLibrary('int',all); #find which library command int is in "C:\Program Files\Maple 18\lib\update.mla", "C:\Program Files\Maple 18\lib\DEsAndMathematicalFunctions18.mla", "C:\Program Files\Maple 18\lib\maple.mla"
To get content of library do
restart; with(LibraryTools): LibLocation:=cat(kernelopts(mapledir),"/lib/maple.mla"); c:=ShowContents(LibLocation);
Then can use this to print the name of each symbol/command, and then use whattype command to find its type
seq(c[i,1],i=1..20);
To get list of Maple kernel builtin commands and symbols, use this. Written by Acer from Maple prime site:
restart: interface(warnlevel=0): started := false: T := 'T': for i from 1 to 1000 do f := eval(parse(cat("proc() option builtin=",i,"; end proc"))); p := (s->StringTools:-Take(s,StringTools:-Search(";",s)-1))(convert(eval(f),string)[26..]); if not type(parse(p),posint) then T[i] := p; started := true; else if started then i:=1000; next; end if; end if; end do: i; [ entries(T,nolist) ]; nops(%);
The above gives on Maple 18.02 the following
["crinterp", "equation", "`{}`", "even", "debugopts", "embedded_imaginary", "define_external", "embedded_real", "coeff", "cx_zero", "coeffs", "embedded_axis", "conjugate", "constant", "convert", "cx_infinity", "dlclose", "identical", "divide", "hfloat", "`done`", "function", "`$`", "fraction", "denom", "float", "degree", "finite", "disassemble", "extended_rational", "diff", "extended_numeric", "frem", "`union`", "frontend", "upperbound", "exports", "writeto", "factorial", "`xor`", "evalgf1", "type", "expand", "typematch", "entries", "unames", "evalb", "unbind", "`evalf/hypergeom/kernel`", "atomic", "hfarray", "anything", "hastype", "complex", "has", "boolean", "goto", "`:-`", "gmp_isprime", "`!`", "genpoly", "anyfunc", "gc", "algebraic", "SFloatMantissa", "ssystem", "Scale10", "`stop`", "Scale2", "sort", "SearchText", "`[]`", "`~`", "`subset`", "~Array", "subsindets", "~Matrix", "streamcall", "~Vector", "subs", "Unordered", "table", "ToInert", "system", "_hackwareToPointer", "substring", "UpdateSource", "subsop", "_maplet", "trunc", "_jvm", "`kernel/transpose`", "_treeMatch", "tcoeff", "_savelib", "taylor", "abs", "rtable_num_dims", "addressof", "rtable_num_elems", "_unify", "rtable_options", "_xml", "rtable_redim", "`and`", "rtable_scale", "andmap", "rtable_scanblock", "alias", "rtable_size", "anames", "rtable_sort_indices", "assign", "savelib", "assemble", "rtable_zip", "array", "select", "appendto", "searchtext", "cat", "series", "callback", "selectremove", "bind", "sign", "attributes", "setattribute", "ormap", "ArrayOptions", "order", "Array", "parse", "`**`", "overload", "`*`", "`::`", "numer", "CopySign", "numelems", "`^`", "`or`", "`||`", "op", "nops", "seq", "normal", "time", "`not`", "piecewise", "numboccur", "`?[]`", "userinfo", "modp2", "inner", "mods", "timelimit", "mvMultiply", "traperror", "negate", "rtable_normalize_index", "call_external", "rtable_is_zero", "assigned", "rtable_indfns", "evalf", "rtable_histogram", "eval", "evaln", "rtable_eval", "truefalse", "evalhf", "rtable_convolution", "tabular", "mul", "rtableInfo", "zppoly", "`if`", "rtable", "uneval", "remove", "sfloat", "rhs", "specfunc", "readlib", "string", "reduce_opr", "symbol", "ASSERT", "`?()`", "realcons", "TRACE", "`quit`", "relation", "_local", "pointto", "sequential", "add", "print", "set", "SFloatExponent", "iolib", "radical", "SDMPolynom", "`int/series`", "protected", "Record", "irem", "procedure", "Re", "iquo", "poszero", "isqrt", "real_infinity", "RETURN", "is_gmp", "ratpoly", "`+`", "lcoeff", "rational", "OrderedNE", "kernelopts", "range", "Object", "NumericEventHandler", "icontent", "numeric", "NumericStatus", "igcd", "odd", "NumericClass", "ilog10", "nonpositive", "NumericEvent", "ilog2", "nonreal", "`implies`", "posint", "NameSpace", "indets", "positive", "NextAfter", "indices", "polynom", "MPFloat", "`intersect`", "pos_infinity", "MorrBrilCull", "`<`", "member", "neg_infinity", "Im", "maxnorm", "name", "`<>`", "max", "negint", "`<=`", "map2", "negative", "modp1", "nonnegative", "FromInert", "modp", "negzero", "EqualStructure", "`minus`", "nonposint", "`>=`", "min", "nonnegint", "`>`", "DefaultUnderflow", "lexorder", "imaginary", "`=`", "lhs", "indexable", "ERROR", "ldegree", "indexed", "EqualEntries", "length", "integer", "macro", "list", "DEBUG", "map", "literal", "`..`", "lowerbound", "`module`", "Default0", "lprint", "moduledefinition", "DefaultOverflow"] 296
This one has one solution
eq:=diff(u(z),z$2)+(k-1)*diff(u(z),z)/z+lambda*exp(u(z))=0; sol:=dsolve({subs({k=1,lambda=2},eq),u(0)=1,u(1)=0},numeric,u(z), method=bvp[midrich],'abserr'=0.001); plots[odeplot](sol);
This solved coupled ODE’s, so there are 2 solutions. Say \(x_1(t)\) and \(x_2(r)\), It is a little tricky to plot all solutions generated, but here is an example
restart; R := 0.4; px := 32000; Mm := 0.1; Ds := 9; DO2 := 7.2; YXS := 0.3; KS := 10; Sp := 30; Cb := 8; KO2 := 0.2; R0 := 0.000001; YXO := 0.42857; Vs := px*1/YXS*(Mm*x2(r))/(KS + x2(r))*x1(r)/(KO2 + x1(r)); Vo := px*1/YXO*(Mm*x2(r))/(KS + x2(r))*x1(r)/(KO2 + x1(r)); eqs := diff(x1(r),r$2) + 2/r*diff(x1(r),r)= Vo/DO2, diff(x2(r),r$2) + 2/r* diff(x2(r),r)= Vs/Ds; ic:=D(x1)(R0)=0,x1(R) = Cb,D(x2)(R0)= 0, x2(R) = Sp; sol:=dsolve({eqs,ic},numeric,{x1(r),x2(r)},'abserr'=.52,'maxmesh'=1000,output=listprocedure);
And now to plot do
x1Sol:=rhs(sol[2]); plot(x1Sol(r),r=0..0.4); x2Sol:=rhs(sol[4]); plot(x2Sol(r),r=0..0.4);
This below by Axel Vogt posted on sci.math.symbolic
which does a nice job of formatting
output to specific width.
split_for_print:=proc(expr, len) # expr = some Maple expression # len = length to split with line breaks local L,s,tmp,j; s:=convert(expr, string); L:=[StringTools:-LengthSplit(s, len)]; for j from 1 to nops(L) do # if j = nops(L) then printf("%s ;", L[-1]) if j = nops(L) then printf("%s", L[-1]) else printf("%s\\\n", L[j]); end if; end do: end proc; evalf[100](Pi); split_for_print(%, 40); 3.14159265358979323846264338327950288419\ 7169399375105820974944592307816406286208\ 998628034825342117068
for VIM
in vim, type set syntax=maple
after putting the file maple.vim in ~/.vim/syntax/maple.vim
.
I found maple.vim in above link.
For Maple IDE
use packages();
to find what packages loaded. use unwith
to remove package
packages(); [] with(DynamicSystems): packages(); [DynamicSystems] unwith(DynamicSystems); packages(); []
restart
in separate execution group
with
inside proc(). Use uses
instead.
assume( A::AndProp(NonZero,constant) );
Now can use is(A,constant);
check for ‘=‘ as follows
eq:= x=1; whattype(eq); # `=` if whattype(eq) = `=` then print("yes"); else print("no"); fi; "yes"
check for ‘set‘ as follows
eq:= {diff(y(x),x)=1,x(0)=1}; if whattype(eq) = `set` then print("yes"); else print("no"); fi; "yes"
I could only find a way to export to eps
plotsetup(default): plotsetup(postscript, plotoutput=`t.eps`, plotoptions=`color,portrait,height=300`); plot(sin(x),x=-Pi..Pi,'gridlines'); plotsetup(default):
Make sure not to put :
at the end of the plot command! else it will not be exported. It has
to end with ;
This will same it to t.eps
in the currentdir()
location. Then used ps2pdf t.eps t.pdf
to convert it to PDF. Or just ps2pdf t.eps
it will automatically create t.pdf
Or ps2pdf -dCompatibilityLevel=1.4 t.eps
but may it is best to do
ps2pdf -dCompatibilityLevel=1.4 -dEmbedAllFonts=true t.eps
Also try adding
-dPDFSETTINGS=/printer
to the above. This tells it to optimize it for printing.
Another example of a direction field for an ODE
plotsetup(postscript, plotoutput=`t0.eps`, plotoptions=`color,portrait, height=300` ); ode:= diff(y(x),x) = 3*x^2 - 1; DEtools:-DEplot( ode, y(x), x=-2..2, [y(0) = 0], y=-2..2, linecolour=red, color = blue, stepsize=.05,arrows=MEDIUM ); plotsetup(default);
To find roots of \( (3+4 i)^{1/3}\), do
fsolve(z^3=(3+4*I),z); #gives -1.26495290635775+1.15061369838445*I, -.363984239564424-1.67078820068900*I, 1.62893714592218+.520174502304545*I
A:= Matrix(2, 2, {(1, 1) = 0, (1, 2) = 0, (2, 1) = 0, (2, 2) = 2}); f:=x->`if`(x<>0,x*LinearAlgebra:-IdentityMatrix(2),0*Matrix(2)); B:=map(f,A);
Which gives
now
r:=Matrix(convert(B,listlist))
Gives
Maple has a simple but easy to use pattern matching, which works well. Here are some example. For each case, will show what pattern to detect and how to do it. I am still not very good at pattern matching in Maple and will need to make improvement in this with time.
Detect \(\sqrt {x y}\) in expression.
restart; expr:= sin(x)*sqrt(x*y); if patmatch(expr,a::anything*(b::anything*x*y)^(c::anything),'la') then assign(la); if c =1/2 or c=-1/2 then print("found sqrt(x*y)"); else print("did not find sqrt(x*y)"); fi; fi;
But if the expression was \(\sin (x)\sqrt {x y}+3\) then the above would fail, because there are a term after \(\sqrt {x y}\), so the pattern has to change to
restart; expr:= sin(x)*sqrt(x*y)+3; if patmatch(expr,a::anything*(b::anything*x*y)^(c::anything)+d::anything,'la') then assign(la); if c =1/2 or c=-1/2 then print("found sqrt(x*y)"); else print("did not find sqrt(x*y)"); fi; fi;
There was a case where I wanted to detect form \(f(x) g(\frac {y}{x})\), i.e. \(f(x)\) can be any expression which is function of \(x\) only (it can be constant also) multiplied by a function whose argument must be \(\frac {y}{x}\) or a constant multiplied by \(\frac {y}{x}\).
This means something like \(x g(\frac {y}{x})\) or \(x^2 e^{3 \frac {y}{x}}\) or \(f(x) \sin {\frac {y}{x}}\) or \(\cos {\frac {y}{x}}\) where in this last case \(f(x)=1\) which is allowed.
TO FINISH.
use trigsubs
, very useful command. For example
trigsubs(cos(theta)^3)
Gives
Given \(f(x,y,z)=x^2 z+y^3 z^2-xyz\) we want to find its directional derivative along the vector \(n\).
One way
n:=<-1,0,3>; g:=VectorCalculus[Gradient](x^2*z+y^3*z^2-x*y*z, [x,y,z]); Student[VectorCalculus][DotProduct](g,n/LinearAlgebra[Norm](n,2))
Gives
Another is
Student[MultivariateCalculus][DirectionalDerivative](x^2*z+y^3*z^2-x*y*z, [x,y,z], [-1,0,3]);
Gives the same result.
For simple variable, use assigned
restart; x:=10: assigned(x) true assigned(y) false
For a field in table do
restart; A:=table(["x"=10,"y"=20]): assigned(A["x"]) true assigned(A["z"]) false
For field in Record, I do not know how yet, other than using try catch, as assigned does not seem to work for Record fields.
restart; A:=Record('x'=10,'y'=20); try assigned(A:-x) catch: print("no such field in record") end try; true try assigned(A:-z) catch: print("no such field in record") end try; "no such field in record"
given
simplify(expr)
does not work. So tried subsindets
restart; expr := exp((2*ln(sqrt(p^2 + 1) + p) + 2*ln(a) + ln(p^2 + 1)*a)/(2*a))+ exp(3*x); subsindets(expr,'specfunc( anything, exp )',f->(`if`(has(op(1,f),'ln'),expand(f),f)))
It is possible to also try simplify(expr,exp)
in some cases, but for the above example, this
did not work, i.e. it did not simplify it.
Update december 2023. Trying Maple 2023.2.1, it simplifies the above using
simplify(expr,exp)
restart; expr := exp((2*ln(sqrt(p^2 + 1) + p) + 2*ln(a) + ln(p^2 + 1)*a)/(2*a))+ exp(3*x); simplify(expr,exp)
And
restart; expr:=exp(ln(x)+ln(y)); simplify(expr)
Given
Find its Null, Row and Column space basis vectors.
restart; A:=Matrix([[1,-1,0,2],[1,2,2,-2],[0,2,3,-1]]); LinearAlgebra:-NullSpace(A)
restart; A:=Matrix([[1,-1,0,2],[1,2,2,-2],[0,2,3,-1]]); LinearAlgebra:-RowSpace(A)
restart; A:=Matrix([[1,-1,0,2],[1,2,2,-2],[0,2,3,-1]]); LinearAlgebra:-ColumnSpace(A)
Given
Find the new form after Gaussian elimination
restart; A:=Matrix([[1,-4,-3,-7],[2,-1,1,7],[1,2,3,11]]); LinearAlgebra:-GaussianElimination(A);
Given matrix
Find its Reduced Echelon form.
restart; A:=Matrix([[5,2,18],[0,1,4],[4,1,12]]); Student:-LinearAlgebra:-ReducedRowEchelonForm(A)
Another option is
restart; A:=Matrix([[5,2,18],[0,1,4],[4,1,12]]); MTM:-rref(A)
Given matrix
How to add row
to end of the matrix?
restart; A:=Matrix([[1,1],[2,3],[4,5]]); the_row:=convert([a,b],Vector['row']); ArrayTools:-Concatenate(1,A,the_row);
Use LinearAlgebra:-Adjoint
and then transpose the result. Since the Adjoint is the
transpose of the cofactor.
Given
then
restart; A:=Matrix([[1,2,3],[4,5,6],[7,8,10]]); LinearAlgebra:-Transpose(LinearAlgebra:-Adjoint(A))
When finding eigenvectors of matrix, using LinearAlgebra
, the vectors are not normalized.
How to normalized them so the length is one?
One way is
restart; LA:=LinearAlgebra; Sx:=Matrix([[0,1,0],[1,0,1],[0,1,0]]); #this finds eigenvectors in v lam,v:=LA:-Eigenvectors(Sx); #this normalize it B:=map(n -> v[.., n]/norm(v[.., n], 2), [$1..LA:-RowDimension(v)]): B:=`<|>`(op(B)); #this converts the list back to matrix.
expr:=`ℏ`*x
gives
Notice, the ;
is needed. This `&hbar`*x
will not work. It must be `ℏ`*x
First example
restart; VectorCalculus:-SetCoordinates( 'cartesian'[x,y,z] ); F:=VectorCalculus:-VectorField(<y,-x,0>);
And now
VectorCalculus:-Curl(F);
Second example
restart; VectorCalculus:-SetCoordinates( 'cartesian'[x,y,z] ); F:=VectorCalculus:-VectorField(<y*z^2,x*z^2+2,2*x*y*z-1>);
And now
VectorCalculus:-Curl(F);
Since Curl is zero, field is conservative.
Third example, in cylinderical coodinates
restart; VectorCalculus:-SetCoordinates( 'cylindrical'[rho,phi,z] ); F:=VectorCalculus:-VectorField(<0,-rho,2>);
And now
VectorCalculus:-Curl(F);
Use Student:-LinearAlgebra:-GaussJordanEliminationTutor( A, output=steps )
Where \(A\) is your augmented matrix.
Do not use the Maple command LinearAlgebra:-ColumnSpace
for this. it gives the
columns in the RREF. The correct way is to obtain the corresponding columns of
the pivot columns in the original matrix \(A\). Hence use the command Basis
like
this
A:=Matrix([[1,0,0],[1,1,1]]); LinearAlgebra:-Basis([seq(A[..,i],i=1..LinearAlgebra:-ColumnDimension(A) )]);
Which gives
If you use ColumnSpace
command you’ll get this
A:=Matrix([[1,0,0],[1,1,1]]); LinearAlgebra:-ColumnSpace(A);
These are different. Basis
is the correct command to use, which matches the standard
definition in textbooks.
For integration do
Student:-Calculus1:-ShowSolution(Int(x*sin(x),x));
The steps are displayed. This does not work all the time. For example
integrand:=x*y(x)*diff(y(x),x$2)+x*(diff(y(x),x))^2-y(x)*diff(y(x),x); Student:-Calculus1:-ShowSolution(Int(integrand,x));
gives
Error, (in Student:-Calculus1:-ShowSolution) unable to determine which calculus operation is being applied in this problem; you can provide this information as the 2nd argument on your call to Rule or Hint
For differential equations, support is limited but these are the steps
restart; ode:=diff(y(x),x)=sin(x); Student:-ODEs:-ODESteps(ode)
Prints the steps. If IC is there, then
restart; ode:=diff(y(x),x)=sin(x); ic:=y(0)=1; Student:-ODEs:-ODESteps([ode,ic])
Use FileTools:-ListDirectory
dir_name:="C:/tmp"; currentdir(dir_name); #cd to directory files_to_process := FileTools:-ListDirectory(dir_name,'all','returnonly'="*.tex"): numelems(files_to_process) 100
In the above, files_to_process
is a list of the files in the current folder with extension
.tex
There was a case when I needed to delete lines from text file that contains a say "foo" as an example.
This is what I did. use readline to read the lines, check, and if the line contains "foo" skip, else write the line to a temporary file. At the line, use Rename to rename the temporary file to the file being read.
dir_name:="C:/tmp"; currentdir(dir_name); tmp_file_name := "TMP.txt"; source_file_name := "source.txt"; file_id := fopen(tmp_file_name,WRITE): line := readline(source_file_name): while line<>0 do if not StringTools:-Has(line,"foo") then fprintf(file_id,"%s\n",line); fi; line := readline(source_file_name): od: fclose(file_id); FileTools:-Rename(tmp_file_name,source_file_name,force=true);
Given \(9 x^{5}+4 x^{4}+3 x^{3}+x^{2}+x +1\) how to truncate it, so that all terms of \(x^3\) and higher are removed?
This can be done as follows
restart; p:=1+x+x^2+3*x^3+4*x^4+9*x^5; simplify(p,{x^3=0})
Sometimes it is useful to make a small local piece of code inside a proc, with its
own local variables that do not interfer with the variables of the proc. In Ada,
this is done using declare
clause for example. In Maple on can do the same as
follows
restart; foo:=proc() local n; n:=10; proc() local n; n:=99; print("inside inner proc, n=",n); end proc(); print("n=",n); end proc; foo();
Which prints
"inside inner proc, n=", 99 "n=", 10
Notice the end of the inner anonymous proc above. It has end proc();
and not end proc;
as normal proc. This defines the inner proc and calls it at same time. All the local variables
inside the anonymous proc only exist inside that proc and go away after the call, and they
do not interfer with the outer proc variables. This way we can declare temporary variables
and use them where they are needed.
There was a case where I was making lots of calls from many places to pne specific proc inside a module. I did not want to keep using the long name each time.
the command alias did not work. After some trial and error, found that using use
works.
Here is the solution. First this is the original layout
restart; A:=module() export B:=module() export foo:=proc() print("in A:-B:-foo()"); end proc; end module; export C:=module() export boo:=proc() print("in A:-C:-boo()"); A:-B:-foo(); end proc; end module; end module;
In the above, the goal is replace A:-B:-foo();
with just foo()
and have it bind to
A:-B:-foo();
automatically.
This is done by modifying the above to
restart; A:=module() export B:=module() export foo:=proc() print("in A:-B:-foo()"); end proc; end module; use foo=A:-B:-foo in #add this line here export C:=module() export boo:=proc() print("in A:-C:-boo()"); foo(); #now can just use the short name end proc; end module; end use; #add this line here. end module;
Wrapping the whole module where the short name is used worked.
Any module that needs to use the short name, can do the same. This solved the problem.
I had case where there is list of Objects, and wanted to removed duplicate entries in the list based on if some field is the same among the objects.
This can be done using the command ListTools:-MakeUnique
and using a proc which
checks for the condition. In this example, we want to remove objects where the field age
in
each object is the same.
restart; #create data type module person_type() option object; export name::string:="me"; export age:=25; end module: #make few objects o1:=Object(person_type); o2:=Object(person_type); o3:=Object(person_type); o3:-age:=46; o4:=Object(person_type); #make list of them list_of_people:=[o1,o2,o3,o4]; nops(list_of_people); #this will print 4 #now delete object if age is same list_of_people:=ListTools:-MakeUnique( list_of_people, 1, proc(a,b) evalb(a:-age=b:-age); end proc ); nops(list_of_people); #this will print 2
Converting a list of Vectors to set will not remove duplicates, as each Vector occupies
different memory address, even if the structure is the same. To remove duplicate vector, use
ListTools:-MakeUnique
as follows
restart; my_list:=[Vector([1,0]),Vector([1,0]),Vector([2,0])]; convert(my_list,set); #this will still show the 3 vectors. ListTools:-MakeUnique(my_list,1,proc(a,b) LinearAlgebra:-Equal(a,b) end proc) #now only 2 vectors will remain. Duplicate one was removed
Gives a rational function in \(x\), such as
How to find all its poles which are \(x=4\) and \(x=5\) and the order of each pole which will be \(1\) and \(3\) in this example?
Using sqrfree
as follows
restart; get_poles_and_order:=proc(r_in,x::symbol)::list; local r:=r_in,N::posint; local the_poles::list; local item; r:=normal(r); if not type(r,'ratpoly'(anything,x)) then error("Not be a polynomial or a rational function in ",x) fi; the_poles := sqrfree(denom(r),x); the_poles := the_poles[2,..]; #we do not need the overall factor for N,item in the_poles do the_poles[N]:=[solve(item[1]=0,x),item[2]]; od; return the_poles; end proc:
The above proc get_poles_and_order
returns back a list of lists. Each sublist has its first
entry the pole and the second entry the order.
Here are some examples
r:=1/(10*(x-4)*(x-5)^3); get_poles_and_order(r,x) #[[4, 1], [5, 3]]
The above says there is a pole at \(x=4\) of order 1 and pole at \(x=5\) of order 3.
Doing series
in Maple with specific order value, the number of terms generated ofcourse
depends on the function. I had need to have the series generated always with same number
of terms. I could not find an option in Maple to do that. This function does this. It keeps
finding the series for the function with increasing order until the number terms that comes
out is what requested. There is an upper limit that can be changed if needed to protect
against pathological cases.
restart; get_series_by_terms:=proc(expr,x::symbol,at::numeric,number_terms_needed::posint) local keep_running::boolean:=true; local current_order::integer:=0; local MAX_ORDER_TO_TRY::posint:=100; #change as needed local result; do current_order := current_order+1; result := convert(series(expr,x=at,current_order),polynom); if nops(result) >= number_terms_needed or current_order>MAX_ORDER_TO_TRY then keep_running:=false; fi; until keep_running=false; return result; end proc:
And now
get_series_by_terms(sin(x),x,0,10)
returns
Given a parent module \(A\) and inside it there are two child modules (local modules) with names
say \(B\) and \(C\). To call a proc foo
inside \(B\) from another proc inside \(C\), the proc foo
has to be
exported. But the module \(B\) does not have to be exported, if we make sure to use B:-foo()
call instead of full name A:-B:-foo()
call.
So make sure to use child:-proc()
from other sibilings to avoid having to make each child
exported. Making children exported means they can be seen and called directly from outside
the parent which his not what we want.
Here is an example
restart; A:=module() #parent export main:=proc() C:-foo(); end proc; local B:=module() #child export foo:=proc() print("in A:-B:-foo() proc"); end proc; end module; local C:=module() #child export foo:=proc() print("in A:-C:-foo(). About to call A:-B:-foo()"); B:-foo(); #do this and NOT A:-B:-foo() end proc; end module; end module;
and now
A:-main() "in A:-C:-foo(). About to call A:-B:-foo()" "in A:-B:-foo() proc"
If instead we have written A:-B:-foo()
in the above call, then Maple will complain with
the error Error, (in foo) module does not export `B`
Maple’s command Value(Time())
returns 13 digits number, which is number of milliseconds
from epoch. I wanted this value to be in seconds, to match the file changed time
from FileTools[Status]("A.txt" )
which uses seconds and not milliseconds. I
could not find an option to tell Date
or Time
to do this. Here is one way to do
this.
r:=Value(Time()); #r := 1652677498870 length(r); #13 r:=convert(r, base, 10); r:=ListTools:-Reverse(r); r:=r[1..-4]; #remove last 3 digits nops(r); r:=parse(cat(op(r))) #r := 1652677498 length(r); #10
This can be made into a function
get_time_in_seconds:=proc()::integer; local r; r:=Value(Time()); r:=convert(r, base, 10); r:=ListTools:-Reverse(r); r:=r[1..-4]; r:=parse(cat(op(r))); return r; end proc; get_time_in_seconds() #1652679222
I noticed that Maple returns the summation index variable using leading underscore as in _n
or _m
which makes the latex looks not as good. Here is an example
restart; dsolve(diff(y(x),x$2)+diff(y(x),x)+y(x)=0,y(x),'formal_series'); y(x) = _C1*Sum((-1/2 - sqrt(3)*I/2)^_n*x^_n/_n!, _n = 0 .. infinity) + _C2*Sum((-1/2 + sqrt(3)*I/2)^_n*x^_n/_n!, _n = 0 .. infinity)
The latex of the above is
Not seeing an option to change _n
to n
, I wrote the following function which takes in the
solution, use subsindets
and remove the leading underscore.
This is the above example showing how to use the function
restart; fix_summation_index:=proc(expr) local fix_it:=proc(the_sum) local the_letter::symbol,the_new_letter::symbol,the_letter_as_string::string; the_letter:= op([2,1],the_sum); the_letter_as_string:=String(the_letter); if the_letter_as_string[1]="_" then the_new_letter:=parse(the_letter_as_string[2..]); RETURN(subs(the_letter=the_new_letter,the_sum)); else RETURN(the_sum); fi; end proc; if not(has(expr,Sum)) then RETURN(expr); else RETURN(subsindets( expr, 'specfunc( anything, Sum )', f->fix_it(f))); fi; end proc; sol:=dsolve(diff(y(x),x$2)+diff(y(x),x)+y(x)=0,y(x),'formal_series'): sol:=fix_summation_index(sol); y(x) = _C1*Sum((-1/2 - sqrt(3)*I/2)^n*x^n/n!, n = 0 .. infinity) + _C2*Sum((-1/2 + sqrt(3)*I/2)^n*x^n/n!, n = 0 .. infinity)
The latex now is