The general Riccati ode is
This can be converted to second order linear ode in \(u(x)\) using the transformation
Which results, after some simpliļ¬cations in the ode
The following Maple code does the above
riccati_ode:= diff(y(x),x)= f__0(x)+f__1(x)*y(x)+f__2(x)*y(x)^2; Typesetting:-Unsuppress('all'); #always do this. Typesetting:-Settings(prime=x,'typesetprime'=true); #this says to use y'(x) instead of dy/dx Typesetting:-Suppress(u(x)); # this says to use y' and not y'(x) PDEtools:-dchange( {y(x)= -diff(u(x),x)/(f__2(x)*u(x))},riccati_ode,{u}); (lhs-rhs)(%); numer(normal(%)); collect(%,[diff(u(x),x),diff(u(x),x$2)]); map(X->X/f__2(x),%); new_U_ode:=-%=0;
Gives