Suppose we are given \(z=x e^{-y}, x=\cosh (t), y=\cos (s)\) and need to find \(\frac {dz}{ds}\)
x[t_] := Cosh[t] y[s_] := Cos[s] z[x_, y_] := x[t] Exp[-y[s]] D[z[x, y], s]
|
(Cosh[t]*Sin[s])/E^Cos[s]
|
Another example: \(u=x^2 y^3 z, x=\sin (s+t), y=\cos (s+t), z=e^{s t}\) and we need to find \(\frac {du}{ds}\) and \(\frac {du}{dt}\)