2.104   ODE No. 104

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

axy(x)2+bx+xy(x)+2y(x)=0 Mathematica : cpu = 0.111434 (sec), leaf count = 43

{{y(x)1axbatan(axbac1)}} Maple : cpu = 0.046 (sec), leaf count = 63

{y(x)=1a(1x(iabx1)+e2iabx(_C1i2e2iabx1a1b)1)}

Hand solution

xy+axy2+2y+bx=0This is Riccati non-linear first order. Converting it to standard form(1)y=b2xyay2=f0+f1y+f2y2

Using transformation suggested by Kamke y=u(x)1ax then y=u+1ax2. Equating this to RHS of (1) givesu+1ax2=b2x(u1ax)a(u1ax)2=b2xu+2ax2a(u2+1a2x22uax)=b2xu+2ax2au21ax2+2ux

Hence

u=bau2dudx=bau2

This is separable

dub+au2=dx

Integrating

dub+au2=x+C1baarctan(auba)=x+Carctan(auba)=bax+Cu=baatan(bax+C)

Hence

y=u1ax=baatan(bax+C)1ax

Verification

restart; 
ode:=x*diff(y(x),x)+a*x*y(x)^2+2*y(x)+b*x = 0; 
my_solution:=sqrt(b*a)/a*tan(-sqrt(b*a)*x+_C1)-1/(a*x); 
odetest(y(x)=my_solution,ode); 
0