\[ -y'(x) (a b+c+x)+a y''(x)+y(x) (b (c+x)+d)=0 \] ✓ Mathematica : cpu = 0.038418 (sec), leaf count = 99
\[\left \{\left \{y(x)\to c_1 e^{b x} H_d\left (\frac {x}{\sqrt {2} \sqrt {a}}-\frac {a b-c}{\sqrt {2} \sqrt {a}}\right )+c_2 e^{b x} \, _1F_1\left (-\frac {d}{2};\frac {1}{2};\left (\frac {x}{\sqrt {2} \sqrt {a}}-\frac {a b-c}{\sqrt {2} \sqrt {a}}\right )^2\right )\right \}\right \}\] ✓ Maple : cpu = 0.109 (sec), leaf count = 58
\[ \left \{ y \left ( x \right ) ={{\rm e}^{bx}} \left ( {{\sl U}\left (-{\frac {d}{2}},\,{\frac {1}{2}},\,{\frac { \left ( ab-c-x \right ) ^{2}}{2\,a}}\right )}{\it \_C2}+{{\sl M}\left (-{\frac {d}{2}},\,{\frac {1}{2}},\,{\frac { \left ( ab-c-x \right ) ^{2}}{2\,a}}\right )}{\it \_C1} \right ) \right \} \]