2.109   ODE No. 109

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

xy(x)y(x)(2y(x)log(x)1)=0 Mathematica : cpu = 0.0693812 (sec), leaf count = 17

{{y(x)12log(x)+c1x+2}} Maple : cpu = 0.012 (sec), leaf count = 15

{y(x)=(2+_C1x+2ln(x))1}

Hand solution

xy+axy2+2y+bx=0This is Riccati non-linear first order. Converting it to standard formxyy(2ylnx1)=0xy=y(2ylnx1)(1)y=1xy+y22xlnxy=f0+f1y+f2y2

This is Bernoulli non-linear first order ODE since f0=0. Dividing by y2 givesyy2=1x1y+2xlnx Putting u=1y, hence u=yy2, and the above becomesu=1xu+2lnxxu+1xu=2lnxxu1xu=2lnxx

Integrating factor is μ=e1xdx=elnx=1x, henced(μu)=2μlnxxd(1xu)=2lnxx2

Integrating1xu=21x2lnxdx+C=2(lnxx1x)+C

Thereforeu=2x(lnxx1x)+Cx=2(lnx+1)+Cx

Since u=1y theny=12(lnx+1)+Cx Verification

restart; 
ode:=x*diff(y(x),x)-y(x)*(2*y(x)*ln(x)-1)=0; 
my_solution:=1/(2*(ln(x)+1)+_C1*x); 
odetest(y(x)=my_solution,ode); 
0