2.11   ODE No. 11

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

f(x)y(x)g(x)+y(x)=0 Mathematica : cpu = 0.0188026 (sec), leaf count = 66

{{y(x)exp(1xf(K[1])dK[1])1xexp(1K[2]f(K[1])dK[1])g(K[2])dK[2]+c1exp(1xf(K[1])dK[1])}} Maple : cpu = 0.021 (sec), leaf count = 24

{y(x)=(g(x)ef(x)dxdx+_C1)ef(x)dx}

Hand solution

(1)dydx+y(x)f(x)=g(x)

Integrating factor μ=ef(x)dx.   Therefore (1) becomesddx(ef(x)dxy(x))=ef(x)dxg(x) Integratingef(x)dxy(x)=ef(x)dxg(x)dx+Cy(x)=ef(x)dxef(x)dxg(x)dx+ef(x)dxC=(ef(x)dxg(x)dx+C)ef(x)dx