[next] [prev] [prev-tail] [tail] [up]
f(x)y(x)−g(x)+y′(x)=0 ✓ Mathematica : cpu = 0.0188026 (sec), leaf count = 66
{{y(x)→exp(∫1x−f(K[1])dK[1])∫1xexp(−∫1K[2]−f(K[1])dK[1])g(K[2])dK[2]+c1exp(∫1x−f(K[1])dK[1])}} ✓ Maple : cpu = 0.021 (sec), leaf count = 24
{y(x)=(∫g(x)e∫f(x)dxdx+_C1)e∫−f(x)dx}
(1)dydx+y(x)f(x)=g(x)
Integrating factor μ=e∫f(x)dx. Therefore (1) becomesddx(e∫f(x)dxy(x))=e∫f(x)dxg(x) Integratinge∫f(x)dxy(x)=∫e∫f(x)dxg(x)dx+Cy(x)=e−∫f(x)dx∫e∫f(x)dxg(x)dx+e−∫f(x)dxC=(∫e∫f(x)dxg(x)dx+C)e−∫f(x)dx
[next] [prev] [prev-tail] [front] [up]