2.112   ODE No. 112

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

x2+y(x)2+xy(x)y(x)=0 Mathematica : cpu = 0.0903801 (sec), leaf count = 13

{{y(x)xsinh(log(x)+c1)}} Maple : cpu = 0.033 (sec), leaf count = 27

{1x2(y(x))2+x2+y(x)x2_C1=0}

Hand solution

xy=x2+y2+y

Let y=xv, then y=v+xv and the above becomes

x(v+xv)=x2+(xv)2+xvx(v+xv)=x1+v2+xv(v+xv)=1+v2+vxv=1+v2

Separable.

dv1+v2=1xdx

Integrating

arcsinh(v)=lnx+Cv=sinh(lnx+C)

Since y=xv then

y=xsinh(lnx+C)

Verification

ode:=x*diff(y(x),x)=sqrt(x^2+y(x)^2)+y(x); 
y0:=x*sinh(ln(x)+_C1); 
odetest(y(x)=y0,ode) assuming x>= 0; 
0