2.114   ODE No. 114

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

xx2+y(x)2+xy(x)y(x)=0 Mathematica : cpu = 0.0894469 (sec), leaf count = 12

{{y(x)xsinh(x+c1)}} Maple : cpu = 2.852 (sec), leaf count = 28

{ln((y(x))2+x2+y(x))xln(x)_C1=0}

Hand solution

xy=xx2+y2+y

Let y=xv, then y=v+xv and the above becomes

x(v+xv)=xx2+(xv)2+xv(v+xv)=x1+v2+vxv=x1+v2v=1+v2

Separable.

dv1+v2=dx

Integrating

arcsinh(v)=x+Cv=sinh(x+C)

Since y=xv then

y=xsinh(x+C)

Verification

ode:=x*diff(y(x),x)=x*sqrt(x^2+y(x)^2)+y(x); 
y0:=x*sinh(x+_C1); 
odetest(y(x)=y0,ode) assuming x>0; 
0