\[ (a x+b) y'(x)+c y(x)+\left (x^2-1\right ) y''(x)=0 \] ✓ Mathematica : cpu = 0.126911 (sec), leaf count = 193
\[\left \{\left \{y(x)\to c_2 2^{\frac {1}{2} (a+b-2)} (x-1)^{\frac {1}{2} (-a-b+2)} \, _2F_1\left (-\frac {b}{2}-\frac {1}{2} \sqrt {a^2-2 a-4 c+1}+\frac {1}{2},-\frac {b}{2}+\frac {1}{2} \sqrt {a^2-2 a-4 c+1}+\frac {1}{2};-\frac {a}{2}-\frac {b}{2}+2;\frac {1-x}{2}\right )+c_1 \, _2F_1\left (\frac {a}{2}-\frac {1}{2} \sqrt {a^2-2 a-4 c+1}-\frac {1}{2},\frac {a}{2}+\frac {1}{2} \sqrt {a^2-2 a-4 c+1}-\frac {1}{2};\frac {a}{2}+\frac {b}{2};\frac {1-x}{2}\right )\right \}\right \}\] ✓ Maple : cpu = 0.358 (sec), leaf count = 134
\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{\mbox {$_2$F$_1$}(-{\frac {1}{2}}-{\frac {1}{2}\sqrt {{a}^{2}-2\,a-4\,c+1}}+{\frac {a}{2}},-{\frac {1}{2}}+{\frac {1}{2}\sqrt {{a}^{2}-2\,a-4\,c+1}}+{\frac {a}{2}};\,{\frac {a}{2}}-{\frac {b}{2}};\,{\frac {1}{2}}+{\frac {x}{2}})}+{\it \_C2}\, \left ( {\frac {1}{2}}+{\frac {x}{2}} \right ) ^{1-{\frac {a}{2}}+{\frac {b}{2}}}{\mbox {$_2$F$_1$}({\frac {1}{2}}-{\frac {1}{2}\sqrt {{a}^{2}-2\,a-4\,c+1}}+{\frac {b}{2}},{\frac {1}{2}}+{\frac {1}{2}\sqrt {{a}^{2}-2\,a-4\,c+1}}+{\frac {b}{2}};\,2-{\frac {a}{2}}+{\frac {b}{2}};\,{\frac {1}{2}}+{\frac {x}{2}})} \right \} \]