\[ a y'(x)+(x-1) x y''(x)-2 y(x)=0 \] ✓ Mathematica : cpu = 0.660043 (sec), leaf count = 360
\[\left \{\left \{y(x)\to \frac {c_2 x^a \left (a^2+2 a x-a+2 x^2-2 x\right ) (1-x)^{-a} \left (-\frac {a \, _2F_1\left (1,-a;1-a;\frac {\left (-a+\sqrt {1-a^2}+1\right ) (x-1)}{\left (-a+\sqrt {1-a^2}-1\right ) x}\right )}{\left (1-a^2\right )^{3/2}}+\frac {a \, _2F_1\left (1,-a;1-a;\frac {\left (a+\sqrt {1-a^2}-1\right ) (x-1)}{\left (a+\sqrt {1-a^2}+1\right ) x}\right )}{\left (1-a^2\right )^{3/2}}+\frac {(x-1) \left (\left (\sqrt {1-a^2}+1\right ) \, _2F_1\left (2,1-a;2-a;\frac {\left (-a+\sqrt {1-a^2}+1\right ) (x-1)}{\left (-a+\sqrt {1-a^2}-1\right ) x}\right )-\left (\sqrt {1-a^2}-1\right ) \, _2F_1\left (2,1-a;2-a;\frac {\left (a+\sqrt {1-a^2}-1\right ) (x-1)}{\left (a+\sqrt {1-a^2}+1\right ) x}\right )\right )}{\left (a^2-1\right )^2 x}\right )}{2 a^2 \left (a^2+3 a+4\right )}+\frac {c_1 \left (a^2+2 a x-a+2 x^2-2 x\right )}{a^2+3 a+4}\right \}\right \}\] ✓ Maple : cpu = 0.043 (sec), leaf count = 42
\[ \left \{ y \left ( x \right ) = \left ( {a}^{2}+a \left ( 2\,x-1 \right ) +2\,{x}^{2}-2\,x \right ) {\it \_C1}+{\frac {{\it \_C2}\,{x}^{a}x \left ( x-1 \right ) }{ \left ( x-1 \right ) ^{a}}} \right \} \]