\[ y(x) (2 l x (-n+p-1)+2 l p+m)+2 \left (x (-2 l+n+1)-l x^2+n+1\right ) y'(x)+x (x+2) y''(x)=0 \] ✓ Mathematica : cpu = 0.451418 (sec), leaf count = 148
\[\left \{\left \{y(x)\to c_2 \left (-\frac {x}{2}-1\right )^{\frac {n}{2}+\frac {1}{2}} x^{-n} (x+2)^{-\frac {n}{2}-\frac {1}{2}} \text {HeunC}\left [-4 l n-2 l p-m+n^2+n,-4 l (p-1),1-n,n+1,4 l,-\frac {x}{2}\right ]+c_1 \left (-\frac {x}{2}-1\right )^{\frac {n}{2}+\frac {1}{2}} (x+2)^{-\frac {n}{2}-\frac {1}{2}} \text {HeunC}\left [-2 l p-m,4 l (n-p+1),n+1,n+1,4 l,-\frac {x}{2}\right ]\right \}\right \}\] ✓ Maple : cpu = 1.103 (sec), leaf count = 105
\[ \left \{ y \left ( x \right ) = \left ( x+2 \right ) ^{-{\frac {n}{2}}-{\frac {1}{2}}} \left ( -{\frac {x}{2}}-1 \right ) ^{{\frac {n}{2}}+{\frac {1}{2}}} \left ( {\it HeunC} \left ( 4\,l,-n,n,-4\,pl,{\frac { \left ( 4\,n+4\,p+4 \right ) l}{2}}-{\frac {{n}^{2}}{2}}+m-n,-{\frac {x}{2}} \right ) {x}^{-n}{\it \_C2}+{\it HeunC} \left ( 4\,l,n,n,-4\,pl,{\frac { \left ( 4\,n+4\,p+4 \right ) l}{2}}-{\frac {{n}^{2}}{2}}+m-n,-{\frac {x}{2}} \right ) {\it \_C1} \right ) \right \} \]