\[ y''(x)=-\frac {y'(x) \left (-x (a (\delta +\text {gamma1})+\alpha +\beta -\delta +1)+a \text {gamma1}+x^2 (\alpha +\beta +1)\right )}{(x-1) x (x-a)}-\frac {y(x) (\alpha \beta x-q)}{(x-1) x (x-a)} \] ✓ Mathematica : cpu = 0.606059 (sec), leaf count = 67
\[\left \{\left \{y(x)\to c_2 x^{1-\text {gamma1}} \text {HeunG}[a,q-(\text {gamma1}-1) ((a-1) \delta +\alpha +\beta -\text {gamma1}+1),\beta -\text {gamma1}+1,\alpha -\text {gamma1}+1,2-\text {gamma1},\delta ,x]+c_1 \text {HeunG}[a,q,\alpha ,\beta ,\text {gamma1},\delta ,x]\right \}\right \}\] ✓ Maple : cpu = 2.505 (sec), leaf count = 64
\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{\it HeunG} \left ( a,q,\alpha ,\beta ,\gamma 1,\delta ,x \right ) +{\it \_C2}\,{x}^{1-\gamma 1}{\it HeunG} \left ( a,q- \left ( -1+\gamma 1 \right ) \left ( \delta \, \left ( a-1 \right ) +\alpha +\beta -\gamma 1+1 \right ) ,\beta +1-\gamma 1,\alpha +1-\gamma 1,-\gamma 1+2,\delta ,x \right ) \right \} \]