\[ y''(x)=\frac {y(x) \sin (x)}{x \cos (x)-\sin (x)}-\frac {x \sin (x) y'(x)}{x \cos (x)-\sin (x)} \] ✓ Mathematica : cpu = 0.116406 (sec), leaf count = 15
\[\{\{y(x)\to c_1 x+c_2 \sin (x)\}\}\] ✓ Maple : cpu = 3.459 (sec), leaf count = 58
\[ \left \{ y \left ( x \right ) =\sin \left ( x \right ) \left ( \int \!{{\rm e}^{\int \!{\frac {-2\, \left ( \cos \left ( x \right ) \right ) ^{3}x+3\,\sin \left ( x \right ) \left ( \cos \left ( x \right ) \right ) ^{2}-\sin \left ( x \right ) }{ \left ( x\sin \left ( x \right ) \cos \left ( x \right ) + \left ( \cos \left ( x \right ) \right ) ^{2}-1 \right ) \cos \left ( x \right ) }}\,{\rm d}x}}\cos \left ( x \right ) \,{\rm d}x{\it \_C2}+{\it \_C1} \right ) \right \} \]