\[ \left (x^2+1\right ) y^{(3)}(x)+\frac {1}{x^2}+10 y'(x)+8 x y''(x)-2 \log (x)-3=0 \] ✓ Mathematica : cpu = 0.391946 (sec), leaf count = 258
\[\left \{\left \{y(x)\to \frac {1}{225} \left (-\frac {51 x}{x^2+1}-\frac {34 x}{\left (x^2+1\right )^2}-\frac {225 c_2 x}{x^2+1}-\frac {150 c_2 x}{\left (x^2+1\right )^2}-\frac {225 c_1}{4 \left (x^2+1\right )^2}-9 x+\frac {47}{x-i}+\frac {47}{x+i}+45 x \log (x)+60 i \log (-x+i)+\frac {171}{2} i \log (1-i x)-\frac {171}{2} i \log (1+i x)+\frac {30 \log (x)}{x-i}+\frac {30 \log (x)}{x+i}-\frac {30 i \log (x)}{(x-i)^2}+\frac {30 i \log (x)}{(x+i)^2}-60 i \log (x+i)+\frac {75 c_2}{x-i}+\frac {75 c_2}{x+i}+\frac {225}{2} i c_2 \log (1-i x)-\frac {225}{2} i c_2 \log (1+i x)-3 (17+75 c_2) \tan ^{-1}(x)\right )+c_3\right \}\right \}\] ✓ Maple : cpu = 0.13 (sec), leaf count = 67
\[ \left \{ y \left ( x \right ) ={\frac { \left ( 45\,{x}^{5}+150\,{x}^{3}+225\,x \right ) \ln \left ( x \right ) -9\,{x}^{5}+225\,{\it \_C1}\,{x}^{4}+ \left ( 225\,{\it \_C2}-50 \right ) {x}^{3}+450\,{\it \_C1}\,{x}^{2}+ \left ( 675\,{\it \_C2}-225 \right ) x+225\,{\it \_C3}}{225\, \left ( {x}^{2}+1 \right ) ^{2}}} \right \} \]