2.16   ODE No. 16

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

f(x)(xy(x)1)+y(x)+y(x)2=0 Mathematica : cpu = 0.0372842 (sec), leaf count = 186

{{y(x)exp(1xf(K[1])K[1]2+2K[1]dK[1])1xexp(1K[2]f(K[1])K[1]2+2K[1]dK[1])dK[2]+c1exp(1xf(K[1])K[1]2+2K[1]dK[1])+xx(exp(1xf(K[1])K[1]2+2K[1]dK[1])1xexp(1K[2]f(K[1])K[1]2+2K[1]dK[1])dK[2]+c1exp(1xf(K[1])K[1]2+2K[1]dK[1]))}} Maple : cpu = 0.088 (sec), leaf count = 49

{y(x)=ex2f(x)2xdx(_C1+ex2f(x)2xdxdx)1+x1}

Hand solution

y+y2+(xy1)f=0(1)y(x)=(xy+1)fy2

This is Riccati first order non-linear ODE of the form. We can see a particular solution is yp=1x, therefore, we use the substitutiony(x)=yp(x)+1u(x)=1x+1u

Hencey(x)=yp(x)u(x)u2(x)(2)=1x2u(x)u2(x)

Equating (1) and (2) gives(xy+1)fy2=1x2uu2(x(1x+1u)+1)f(1x+1u)2=1x2uu2((1xu)+1)f(1x2+1u2+2xu)=1x2uu2xuf(1x2+1u2+2xu)=1x2uu2xuf1x21u22xu=1x2uu2xuf12ux=uu=xuf+1+2ux

Henceu(xf+2x)u=1 Integrating factor is μ=e(xf+2x)dx, hence the solution isd(μu)=μ Integrating both sidesμu=μdx+Cu=e(xf+2x)dxe(xf+2x)dxdx+Ce(xf+2x)dx=e(xf+2x)dx(e(xf+2x)dxdx+C)

Hencey=yp+1u=1x+1e(xf+2x)dx(e(xf+2x)dxdx+C)

Hencey(x)=1x+e(xf+2x)dx(e(xf+2x)dxdx+C)1