[next] [prev] [prev-tail] [tail] [up]
−2(n+1)(n+2)y(x)(y(x)nn+1−1)n2−(3n+4)y′(x)n+y″(x)=0 ✗ Mathematica : cpu = 75.3693 (sec), leaf count = 0 , could not solve
DSolve[(-2*(1 + n)*(2 + n)*y[x]*(-1 + y[x]^(n/(1 + n))))/n^2 - ((4 + 3*n)*Derivative[1][y][x])/n + Derivative[2][y][x] == 0, y[x], x]
✓ Maple : cpu = 12.922 (sec), leaf count = 91
{y(x)=ODESolStruc(_a,[{1n2(−2(n+2)(n+1)_a_ann+1+(dd_a_b(_a))_b(_a)n2+(−3n2−4n)_b(_a)+2(n+2)(n+1)_a)=0},{_a=y(x),_b(_a)=ddxy(x)},{x=∫(_b(_a))−1d_a+_C1,y(x)=_a}])}
[next] [prev] [prev-tail] [front] [up]