\[ y(x) y'(x)+y''(x)-y(x)^3=0 \] ✓ Mathematica : cpu = 3.08176 (sec), leaf count = 492
\[\left \{\left \{y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {2}{\frac {e^{6 c_1} K[1]^4}{\sqrt [3]{e^{18 c_1} K[1]^6-2 e^{12 c_1}+2 \sqrt {e^{24 c_1}-e^{30 c_1} K[1]^6}}}-K[1]^2+e^{-6 c_1} \sqrt [3]{e^{18 c_1} K[1]^6-2 e^{12 c_1}+2 \sqrt {e^{24 c_1}-e^{30 c_1} K[1]^6}}}dK[1]\& \right ][x+c_2]\right \},\left \{y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{-\frac {\left (1+i \sqrt {3}\right ) e^{6 c_1} K[2]^4}{4 \sqrt [3]{e^{18 c_1} K[2]^6-2 e^{12 c_1}+2 \sqrt {e^{24 c_1}-e^{30 c_1} K[2]^6}}}-\frac {K[2]^2}{2}-\frac {1}{4} \left (1-i \sqrt {3}\right ) e^{-6 c_1} \sqrt [3]{e^{18 c_1} K[2]^6-2 e^{12 c_1}+2 \sqrt {e^{24 c_1}-e^{30 c_1} K[2]^6}}}dK[2]\& \right ][x+c_2]\right \},\left \{y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{-\frac {\left (1-i \sqrt {3}\right ) e^{6 c_1} K[3]^4}{4 \sqrt [3]{e^{18 c_1} K[3]^6-2 e^{12 c_1}+2 \sqrt {e^{24 c_1}-e^{30 c_1} K[3]^6}}}-\frac {K[3]^2}{2}-\frac {1}{4} \left (1+i \sqrt {3}\right ) e^{-6 c_1} \sqrt [3]{e^{18 c_1} K[3]^6-2 e^{12 c_1}+2 \sqrt {e^{24 c_1}-e^{30 c_1} K[3]^6}}}dK[3]\& \right ][x+c_2]\right \}\right \}\] ✓ Maple : cpu = 0.322 (sec), leaf count = 291
\[ \left \{ \int ^{y \left ( x \right ) }\!2\, \left ( {\frac {{{\it \_a}}^{4}}{\sqrt [3]{{{\it \_a}}^{6}+2\,{\it \_C1}+2\,\sqrt {{\it \_C1}\,{{\it \_a}}^{6}+{{\it \_C1}}^{2}}}}}-{{\it \_a}}^{2}+\sqrt [3]{{{\it \_a}}^{6}+2\,{\it \_C1}+2\,\sqrt {{\it \_C1}\,{{\it \_a}}^{6}+{{\it \_C1}}^{2}}} \right ) ^{-1}{d{\it \_a}}-x-{\it \_C2}=0,\int ^{y \left ( x \right ) }\!4\, \left ( {\frac {{{\it \_a}}^{4} \left ( -1+i\sqrt {3} \right ) }{\sqrt [3]{{{\it \_a}}^{6}+2\,{\it \_C1}+2\,\sqrt {{\it \_C1}\,{{\it \_a}}^{6}+{{\it \_C1}}^{2}}}}}-i\sqrt {3}\sqrt [3]{{{\it \_a}}^{6}+2\,{\it \_C1}+2\,\sqrt {{\it \_C1}\,{{\it \_a}}^{6}+{{\it \_C1}}^{2}}}-2\,{{\it \_a}}^{2}-\sqrt [3]{{{\it \_a}}^{6}+2\,{\it \_C1}+2\,\sqrt {{\it \_C1}\,{{\it \_a}}^{6}+{{\it \_C1}}^{2}}} \right ) ^{-1}{d{\it \_a}}-x-{\it \_C2}=0,\int ^{y \left ( x \right ) }\!-4\, \left ( {\frac {{{\it \_a}}^{4} \left ( 1+i\sqrt {3} \right ) }{\sqrt [3]{{{\it \_a}}^{6}+2\,{\it \_C1}+2\,\sqrt {{\it \_C1}\,{{\it \_a}}^{6}+{{\it \_C1}}^{2}}}}}-i\sqrt {3}\sqrt [3]{{{\it \_a}}^{6}+2\,{\it \_C1}+2\,\sqrt {{\it \_C1}\,{{\it \_a}}^{6}+{{\it \_C1}}^{2}}}+2\,{{\it \_a}}^{2}+\sqrt [3]{{{\it \_a}}^{6}+2\,{\it \_C1}+2\,\sqrt {{\it \_C1}\,{{\it \_a}}^{6}+{{\it \_C1}}^{2}}} \right ) ^{-1}{d{\it \_a}}-x-{\it \_C2}=0 \right \} \]