2.1705   ODE No. 1705

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

\[ -y(x) f'(x)+f(x) y'(x)-y'(x)^2+y(x) y''(x)-y(x)^3=0 \] Mathematica : cpu = 0.263307 (sec), leaf count = 252

\[\left \{\left \{y(x)\to -\frac {\exp \left (c_2-\int _1^x\frac {y(K[2])^3+c_1{}^2 y(K[2])^2+\int _1^{K[2]}\frac {-y(K[1])^3-f'(K[1]) y(K[1])+f(K[1]) y'(K[1])}{y(K[1])^2}dK[1]{}^2 y(K[2])^2+2 c_1 \int _1^{K[2]}\frac {-y(K[1])^3-f'(K[1]) y(K[1])+f(K[1]) y'(K[1])}{y(K[1])^2}dK[1] y(K[2])^2+f'(K[2]) y(K[2])-f(K[2]) y'(K[2])}{y(K[2])^2 \left (c_1+\int _1^{K[2]}\frac {-y(K[1])^3-f'(K[1]) y(K[1])+f(K[1]) y'(K[1])}{y(K[1])^2}dK[1]\right )}dK[2]\right )}{\int _1^x\frac {-y(K[1])^3-f'(K[1]) y(K[1])+f(K[1]) y'(K[1])}{y(K[1])^2}dK[1]+c_1}\right \}\right \}\] Maple : cpu = 0. (sec), leaf count = 0 , could not solve

dsolve(diff(diff(y(x),x),x)*y(x)-diff(y(x),x)^2+f(x)*diff(y(x),x)-diff(f(x),x)*y(x)-y(x)^3=0,y(x))