\[ \left \{x'(t)+y'(t)-y(t)=e^t,2 x'(t)+y'(t)+2 y(t)=\cos (t)\right \} \] ✓ Mathematica : cpu = 0.132132 (sec), leaf count = 122
\[\left \{\left \{x(t)\to -\frac {3}{4} c_2 \left (e^{4 t}-1\right )+\frac {1}{68} e^{-4 t} \left (e^{4 t}-1\right ) \left (34 e^t+3 \sin (t)-12 \cos (t)\right )+\frac {1}{4} \left (2 e^{-3 t}+2 e^t+\frac {3}{17} e^{-4 t} \sin (t)+\sin (t)-\frac {12}{17} e^{-4 t} \cos (t)\right )+c_1,y(t)\to \frac {1}{51} \left (-34 e^t-3 \sin (t)+12 \cos (t)\right )+c_2 e^{4 t}\right \}\right \}\] ✓ Maple : cpu = 0.194 (sec), leaf count = 47
\[ \left \{ \left \{ x \left ( t \right ) ={\frac {{\it \_C1}\,{{\rm e}^{4\,t}}}{4}}+{\frac {5\,\sin \left ( t \right ) }{17}}-{\frac {3\,\cos \left ( t \right ) }{17}}+{{\rm e}^{t}}+{\it \_C2},y \left ( t \right ) =-{\frac {{\it \_C1}\,{{\rm e}^{4\,t}}}{3}}+{\frac {4\,\cos \left ( t \right ) }{17}}-{\frac {\sin \left ( t \right ) }{17}}-{\frac {2\,{{\rm e}^{t}}}{3}} \right \} \right \} \]