\[ a+(6 y(x)-x)^2 y'(x)-6 y(x)^2+2 x y(x)=0 \] ✓ Mathematica : cpu = 0.181916 (sec), leaf count = 115
\[\left \{\left \{y(x)\to \frac {1}{6} \left (x+\sqrt [3]{-18 a x-x^3+18 c_1}\right )\right \},\left \{y(x)\to \frac {x}{6}-\frac {1}{12} \left (1-i \sqrt {3}\right ) \sqrt [3]{-18 a x-x^3+18 c_1}\right \},\left \{y(x)\to \frac {x}{6}-\frac {1}{12} \left (1+i \sqrt {3}\right ) \sqrt [3]{-18 a x-x^3+18 c_1}\right \}\right \}\] ✓ Maple : cpu = 0.028 (sec), leaf count = 115
\[ \left \{ y \left ( x \right ) ={\frac {1}{6}\sqrt [3]{-{x}^{3}-18\,ax-18\,{\it \_C1}}}+{\frac {x}{6}},y \left ( x \right ) =-{\frac {1}{12}\sqrt [3]{-{x}^{3}-18\,ax-18\,{\it \_C1}}}-{\frac {i}{12}}\sqrt {3}\sqrt [3]{-{x}^{3}-18\,ax-18\,{\it \_C1}}+{\frac {x}{6}},y \left ( x \right ) =-{\frac {1}{12}\sqrt [3]{-{x}^{3}-18\,ax-18\,{\it \_C1}}}+{\frac {i}{12}}\sqrt {3}\sqrt [3]{-{x}^{3}-18\,ax-18\,{\it \_C1}}+{\frac {x}{6}} \right \} \]