\[ y'(x) \left (\sum _{\nu =1}^p y(x)^{\nu } f(\nu )(x)\right )-\sum _{\nu =1}^q y(x)^{\nu } g(\nu )(x)=0 \] ✗ Mathematica : cpu = 50.2979 (sec), leaf count = 0 , could not solve
DSolve[-Sum[y[x]^nu*g[nu][x], {nu, 1, q}] + Sum[y[x]^nu*f[nu][x], {nu, 1, p}]*Derivative[1][y][x] == 0, y[x], x]
✓ Maple : cpu = 0.185 (sec), leaf count = 78
\[ \left \{ {\frac {1}{q} \left ( \left ( y \left ( x \right ) \right ) ^{p+1}{\it LerchPhi} \left ( - \left ( y \left ( x \right ) \right ) ^{q} \left ( -1 \right ) ^{{\it csgn} \left ( i \left ( y \left ( x \right ) \right ) ^{q} \right ) },1,{\frac {p+1}{q}} \right ) -y \left ( x \right ) {\it LerchPhi} \left ( - \left ( y \left ( x \right ) \right ) ^{q} \left ( -1 \right ) ^{{\it csgn} \left ( i \left ( y \left ( x \right ) \right ) ^{q} \right ) },1,{q}^{-1} \right ) +q \left ( \int \!{\frac {g_{{\nu }} \left ( x \right ) }{f_{{\nu }} \left ( x \right ) }}\,{\rm d}x+{\it \_C1} \right ) \right ) }=0 \right \} \]