\[ x y'(x)^2-2 y'(x)-y(x)=0 \] ✓ Mathematica : cpu = 30.5494 (sec), leaf count = 66
\[\text {Solve}\left [\left \{x=\frac {y(\text {K$\$$349631})+2 \text {K$\$$349631}}{\text {K$\$$349631}^2},y(x)=e^{2 (\log (\text {K$\$$349631})-\log (1-\text {K$\$$349631}))} \left (-\frac {2}{\text {K$\$$349631}}-2 \log (\text {K$\$$349631})\right )+c_1 e^{2 (\log (\text {K$\$$349631})-\log (1-\text {K$\$$349631}))}\right \},\{y(x),\text {K$\$$349631}\}\right ]\] ✓ Maple : cpu = 0.218 (sec), leaf count = 63
\[ \left \{ y \left ( x \right ) =x{{\rm e}^{2\,{\it RootOf} \left ( -x{{\rm e}^{2\,{\it \_Z}}}+2\,x{{\rm e}^{{\it \_Z}}}+2\,{{\rm e}^{{\it \_Z}}}+{\it \_C1}-2\,{\it \_Z}-x \right ) }}-2\,{{\rm e}^{{\it RootOf} \left ( -x{{\rm e}^{2\,{\it \_Z}}}+2\,x{{\rm e}^{{\it \_Z}}}+2\,{{\rm e}^{{\it \_Z}}}+{\it \_C1}-2\,{\it \_Z}-x \right ) }} \right \} \]