\[ x y'(x)^2+x y'(x)-y(x)=0 \] ✓ Mathematica : cpu = 0.136418 (sec), leaf count = 99
\[\left \{\text {Solve}\left [\frac {1}{\sqrt {\frac {4 y(x)}{x}+1}-1}-\log \left (1-\sqrt {\frac {4 y(x)}{x}+1}\right )=\frac {\log (x)}{2}+c_1,y(x)\right ],\text {Solve}\left [\frac {1}{\sqrt {\frac {4 y(x)}{x}+1}+1}+\log \left (\sqrt {\frac {4 y(x)}{x}+1}+1\right )=-\frac {\log (x)}{2}+c_1,y(x)\right ]\right \}\] ✓ Maple : cpu = 0.117 (sec), leaf count = 65
\[ \left \{ y \left ( x \right ) ={\frac {x}{4} \left ( 1+2\,{\it lambertW} \left ( -1/2\,{\frac {1}{\sqrt {{\frac {{\it \_C1}}{x}}}}} \right ) \right ) \left ( {\it lambertW} \left ( -{\frac {1}{2}{\frac {1}{\sqrt {{\frac {{\it \_C1}}{x}}}}}} \right ) \right ) ^{-2}},y \left ( x \right ) ={\frac {x}{4} \left ( 1+2\,{\it lambertW} \left ( 1/2\,{\frac {1}{\sqrt {{\frac {{\it \_C1}}{x}}}}} \right ) \right ) \left ( {\it lambertW} \left ( {\frac {1}{2}{\frac {1}{\sqrt {{\frac {{\it \_C1}}{x}}}}}} \right ) \right ) ^{-2}} \right \} \]