\[ y(x) y'(x)+x y'(x)^2-y(x)^4=0 \] ✓ Mathematica : cpu = 0.311479 (sec), leaf count = 25
\[\left \{\left \{y(x)\to \frac {2 e^{\frac {c_1}{2}}}{-4 x+e^{c_1}}\right \}\right \}\] ✓ Maple : cpu = 0.554 (sec), leaf count = 95
\[ \left \{ y \left ( x \right ) =-{\frac {1}{2}{\frac {1}{\sqrt {-x}}}},y \left ( x \right ) ={\frac {1}{2}{\frac {1}{\sqrt {-x}}}},y \left ( x \right ) =-{\frac {1}{2\,x}\sqrt {-x \left ( \tanh \left ( -{\frac {\ln \left ( x \right ) }{2}}+{\frac {{\it \_C1}}{2}} \right ) \right ) ^{2}+x} \left ( \tanh \left ( -{\frac {\ln \left ( x \right ) }{2}}+{\frac {{\it \_C1}}{2}} \right ) \right ) ^{-1}},y \left ( x \right ) ={\frac {1}{2\,x}\sqrt {-x \left ( \tanh \left ( -{\frac {\ln \left ( x \right ) }{2}}+{\frac {{\it \_C1}}{2}} \right ) \right ) ^{2}+x} \left ( \tanh \left ( -{\frac {\ln \left ( x \right ) }{2}}+{\frac {{\it \_C1}}{2}} \right ) \right ) ^{-1}} \right \} \]