2.44   ODE No. 44

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

2ax3y(x)3+y(x)+2xy(x)=0 Mathematica : cpu = 0.0725068 (sec), leaf count = 72

{{y(x)22ax2a+2c1e2x2},{y(x)22ax2a+2c1e2x2}} Maple : cpu = 0.017 (sec), leaf count = 53

{y(x)=214ax2+4e2x2_C12a,y(x)=214ax2+4e2x2_C12a}

Hand solution

(1)y=2xy2ax3y3

This is of the form y=f0+f1y+f2y2+f3y3 where f0=0,f2=0. Hence this is Bernoulli first order non-linear ODE. We start by diving by y3yy3=2x1y22ax3 Let u=1y2, hence u=2yy3 and the above becomes12u=2xu2ax3u4xu=4ax3

Integrating factor is e4xdx=e2x2 henceddx(e2x2u)=4ax3e2x2 Integratinge2x2u=4ax3e2x2dx+C=4a(18(2x2+1)e2x2)+C

Thereforeu=12a(2x2+1)+Ce2x2 Hencey2=1u=112a(2x2+1)+Ce2x2 Ory=±2a(2x2+1)+Ce2x2 Verification

ode:=2*a*x^3*y(x)^3+diff(y(x),x)+2*x*y(x)=0; 
my_sol:=sqrt(2)/sqrt(-a*(2*x^2+1)+_C1*exp(2*x^2)); 
odetest(y(x)=my_sol,ode); 
0 
my_sol:=-sqrt(2)/sqrt(-a*(2*x^2+1)+_C1*exp(2*x^2)); 
odetest(y(x)=my_sol,ode); 
0