\[ 4 a^2-4 a y(x) y'(x)-4 a x+y(x)^2 y'(x)^2+y(x)^2=0 \] ✓ Mathematica : cpu = 0.309421 (sec), leaf count = 85
\[\left \{\left \{y(x)\to -\frac {\sqrt {-4 a^2 x^2+16 a^3 x-4 a c_1 x-c_1{}^2}}{2 a}\right \},\left \{y(x)\to \frac {\sqrt {-4 a^2 x^2+16 a^3 x-4 a c_1 x-c_1{}^2}}{2 a}\right \}\right \}\] ✓ Maple : cpu = 0.69 (sec), leaf count = 111
\[ \left \{ y \left ( x \right ) =-2\,\sqrt {ax},y \left ( x \right ) =2\,\sqrt {ax},y \left ( x \right ) =-{\frac {1}{4\,a}\sqrt {-16\,{a}^{4}+32\,{a}^{3}x+ \left ( -16\,{x}^{2}+8\,{\it \_C1} \right ) {a}^{2}+8\,{\it \_C1}\,ax-{{\it \_C1}}^{2}}},y \left ( x \right ) ={\frac {1}{4\,a}\sqrt {-16\,{a}^{4}+32\,{a}^{3}x+ \left ( -16\,{x}^{2}+8\,{\it \_C1} \right ) {a}^{2}+8\,{\it \_C1}\,ax-{{\it \_C1}}^{2}}} \right \} \]