\[ \left (x^2 y(x)^2-x^2+y(x)^4\right ) y'(x)^2+2 x y(x) y'(x)-y(x)^2=0 \] ✓ Mathematica : cpu = 2.07293 (sec), leaf count = 88
\[\text {Solve}\left [\frac {\sqrt {x^2+y(x)^2} y(x) \left (\log \left (\frac {x}{\sqrt {x^2+y(x)^2}}+1\right )-\log \left (1-\frac {x}{\sqrt {x^2+y(x)^2}}\right )\right )}{2 x^2 \sqrt {\frac {y(x)^2 \left (x^2+y(x)^2\right )}{x^4}}}+y(x)=c_1,y(x)\right ]\] ✓ Maple : cpu = 3.458 (sec), leaf count = 60
\[ \left \{ y \left ( x \right ) =-ix,y \left ( x \right ) =ix,y \left ( x \right ) =-{\it Artanh} \left ( {\it RootOf} \left ( \left ( {\it Artanh} \left ( {\it \_Z} \right ) \right ) ^{2}{{\it \_Z}}^{2}-2\,{\it Artanh} \left ( {\it \_Z} \right ) {\it \_C1}\,{{\it \_Z}}^{2}+{{\it \_C1}}^{2}{{\it \_Z}}^{2}+{{\it \_Z}}^{2}{x}^{2}-{x}^{2} \right ) \right ) +{\it \_C1} \right \} \]