[next] [prev] [prev-tail] [tail] [up]
(x2+y(x)2)f(xx2+y(x)2)(y′(x)2+1)−(xy′(x)−y(x))2=0 ✓ Mathematica : cpu = 0.442299 (sec), leaf count = 253
{Solve[∫1y(x)xf(1K[1]2+1)K[1]2+f(1K[1]2+1)−1f(1K[1]2+1)(K[1]−i)(K[1]+i)(f(1K[1]2+1)K[1]+if(1K[1]2+1)−1)dK[1]=−log(x)+c1,y(x)],Solve[∫1y(x)xf(1K[2]2+1)K[2]2+f(1K[2]2+1)−1f(1K[2]2+1)(K[2]−i)(K[2]+i)(f(1K[2]2+1)K[2]−if(1K[2]2+1)−1)dK[2]=−log(x)+c1,y(x)]} ✓ Maple : cpu = 2.997 (sec), leaf count = 72
{y(x)=RootOf(−ln(x)+∫_Z−1_a2+1(_af(1_a2+1)−−(f(1_a2+1))2+f(1_a2+1))(f(1_a2+1))−1d_a+_C1)x}
[next] [prev] [prev-tail] [front] [up]