[next] [prev] [prev-tail] [tail] [up]
f(x)1−ng′(x)y(x)n(−(ag(x)+b)−n)−y(x)f′(x)f(x)−f(x)g′(x)+y′(x)=0 ✓ Mathematica : cpu = 0.390661 (sec), leaf count = 96
Solve[∫1(f(x)−n(b+ag(x))−n)1ny(x)1K[1]n−(an)1nK[1]+1dK[1]=f(x)(ag(x)+b)log(ag(x)+b)(f(x)−n(ag(x)+b)−n)1na+c1,y(x)] ✓ Maple : cpu = 0.13 (sec), leaf count = 281
{y(x)=f(x)(ag(x)+b)aRootOf(−∫_Z((f(x))1−n(ddxg(x))(ag(x)+b)−n)−n−1(f(x)ddxg(x))−2n+1(a(f(x))2−n(ddxg(x))3n(ag(x)+b)−n−1)nn−n_a((f(x))1−n(ddxg(x))(ag(x)+b)−n)−n−1(f(x)ddxg(x))−2n+1(a(f(x))2−n(ddxg(x))3n(ag(x)+b)−n−1)nn−n−((f(x))1−n(ddxg(x))(ag(x)+b)−n)−n−1(f(x)ddxg(x))−2n+1(a(f(x))2−n(ddxg(x))3n(ag(x)+b)−n−1)nn−n−_and_a−ln(ag(x)+b)+_C1)}
[next] [prev] [prev-tail] [front] [up]