\[ y'(x)=\frac {y(x)^2 F\left (\frac {1-2 y(x) \log (x)}{y(x)}\right )}{x} \] ✓ Mathematica : cpu = 0.265956 (sec), leaf count = 246
\[\text {Solve}\left [\int _1^{y(x)}\left (-\int _1^x\left (\frac {2 \left (-\frac {2 \log (K[1])}{K[2]}-\frac {1-2 K[2] \log (K[1])}{K[2]^2}\right ) F'\left (\frac {1-2 K[2] \log (K[1])}{K[2]}\right )}{\left (F\left (\frac {1-2 K[2] \log (K[1])}{K[2]}\right )+2\right ) K[1]}-\frac {2 F\left (\frac {1-2 K[2] \log (K[1])}{K[2]}\right ) \left (-\frac {2 \log (K[1])}{K[2]}-\frac {1-2 K[2] \log (K[1])}{K[2]^2}\right ) F'\left (\frac {1-2 K[2] \log (K[1])}{K[2]}\right )}{\left (F\left (\frac {1-2 K[2] \log (K[1])}{K[2]}\right )+2\right )^2 K[1]}\right )dK[1]-\frac {2}{\left (F\left (\frac {1-2 K[2] \log (x)}{K[2]}\right )+2\right ) K[2]^2}\right )dK[2]+\int _1^x\frac {2 F\left (\frac {1-2 \log (K[1]) y(x)}{y(x)}\right )}{\left (F\left (\frac {1-2 \log (K[1]) y(x)}{y(x)}\right )+2\right ) K[1]}dK[1]=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.351 (sec), leaf count = 38
\[ \left \{ \int _{{\it \_b}}^{y \left ( x \right ) }\!{\frac {1}{{{\it \_a}}^{2}} \left ( F \left ( {\frac {-2\,{\it \_a}\,\ln \left ( x \right ) +1}{{\it \_a}}} \right ) +2 \right ) ^{-1}}\,{\rm d}{\it \_a}-\ln \left ( x \right ) -{\it \_C1}=0 \right \} \]