[next] [prev] [prev-tail] [tail] [up]
y′(x)+y(x)cos(x)−e−sin(x)=0 ✓ Mathematica : cpu = 0.0324698 (sec), leaf count = 23
{{y(x)→xe−sin(x)+c1e−sin(x)}} ✓ Maple : cpu = 0.006 (sec), leaf count = 13
{y(x)=(x+_C1)e−sin(x)}
(1)dydx+y(x)cos(x)=e−sin(x)
Integrating factor μ=e∫cosdx=esinx. Hence (1) becomes
ddx(μy(x))=μe−sin(x)
Replacing μ by esinx and integrating both sides
esinxy(x)=∫esinxe−sin(x)dx+Cesinxy(x)=∫dx+Cesinxy(x)=x+Cy(x)=xe−sinx+Ce−sin(x)
[next] [prev] [prev-tail] [front] [up]