\[ y'(x)=-\frac {y(x) (x \log (y(x))+\log (y(x))-1)}{x+1} \] ✓ Mathematica : cpu = 0.185608 (sec), leaf count = 28
\[\left \{\left \{y(x)\to e^{e^{-x-1} \text {Ei}(x+1)+c_1 e^{-x}}\right \}\right \}\] ✓ Maple : cpu = 0.274 (sec), leaf count = 31
\[ \left \{ y \left ( x \right ) ={{{\rm e}^{{\frac {{\it \_C1}}{{{\rm e}^{x}}}}}} \left ( {{\rm e}^{{\frac {{\it Ei} \left ( 1,-1-x \right ) }{{{\rm e}^{x}}{\rm e}}}}} \right ) ^{-1}} \right \} \]