[next] [prev] [prev-tail] [tail] [up]
y′(x)=−(−cos(y(x))+x+1)cos(y(x))(x+1)(xsin(y(x))−1) ✓ Mathematica : cpu = 3.07936 (sec), leaf count = 3913
{{y(x)→−sec−1(c1x3x2−1+log(x+1)x3x2−1−c13x3(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)−log3(x+1)x3(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)−3c1log2(x+1)x3(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)−c1x3(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)−3c12log(x+1)x3(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)−log(x+1)x3(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)−c12−x2+c12+log2(x+1)+2c1log(x+1)+1x2(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)−log2(x+1)−x2+c12+log2(x+1)+2c1log(x+1)+1x2(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)−2c1log(x+1)−x2+c12+log2(x+1)+2c1log(x+1)+1x2(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)−−x2+c12+log2(x+1)+2c1log(x+1)+1x2(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)+c1xx2−1−c1x+log(x+1)xx2−1−log(x+1)x+c13xc12+2log(x+1)c1+log2(x+1)+1+log3(x+1)xc12+2log(x+1)c1+log2(x+1)+1+3c1log2(x+1)xc12+2log(x+1)c1+log2(x+1)+1+c1xc12+2log(x+1)c1+log2(x+1)+1+3c12log(x+1)xc12+2log(x+1)c1+log2(x+1)+1+log(x+1)xc12+2log(x+1)c1+log2(x+1)+1+c12−x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1+log2(x+1)−x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1+2c1log(x+1)−x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1+−x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1)},{y(x)→sec−1(c1x3x2−1+log(x+1)x3x2−1−c13x3(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)−log3(x+1)x3(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)−3c1log2(x+1)x3(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)−c1x3(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)−3c12log(x+1)x3(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)−log(x+1)x3(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)−c12−x2+c12+log2(x+1)+2c1log(x+1)+1x2(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)−log2(x+1)−x2+c12+log2(x+1)+2c1log(x+1)+1x2(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)−2c1log(x+1)−x2+c12+log2(x+1)+2c1log(x+1)+1x2(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)−−x2+c12+log2(x+1)+2c1log(x+1)+1x2(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)+c1xx2−1−c1x+log(x+1)xx2−1−log(x+1)x+c13xc12+2log(x+1)c1+log2(x+1)+1+log3(x+1)xc12+2log(x+1)c1+log2(x+1)+1+3c1log2(x+1)xc12+2log(x+1)c1+log2(x+1)+1+c1xc12+2log(x+1)c1+log2(x+1)+1+3c12log(x+1)xc12+2log(x+1)c1+log2(x+1)+1+log(x+1)xc12+2log(x+1)c1+log2(x+1)+1+c12−x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1+log2(x+1)−x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1+2c1log(x+1)−x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1+−x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1)},{y(x)→−sec−1(c1x3x2−1+log(x+1)x3x2−1−c13x3(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)−log3(x+1)x3(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)−3c1log2(x+1)x3(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)−c1x3(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)−3c12log(x+1)x3(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)−log(x+1)x3(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)+c12−x2+c12+log2(x+1)+2c1log(x+1)+1x2(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)+log2(x+1)−x2+c12+log2(x+1)+2c1log(x+1)+1x2(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)+2c1log(x+1)−x2+c12+log2(x+1)+2c1log(x+1)+1x2(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)+−x2+c12+log2(x+1)+2c1log(x+1)+1x2(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)+c1xx2−1−c1x+log(x+1)xx2−1−log(x+1)x+c13xc12+2log(x+1)c1+log2(x+1)+1+log3(x+1)xc12+2log(x+1)c1+log2(x+1)+1+3c1log2(x+1)xc12+2log(x+1)c1+log2(x+1)+1+c1xc12+2log(x+1)c1+log2(x+1)+1+3c12log(x+1)xc12+2log(x+1)c1+log2(x+1)+1+log(x+1)xc12+2log(x+1)c1+log2(x+1)+1−c12−x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1−log2(x+1)−x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1−2c1log(x+1)−x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1−−x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1)},{y(x)→sec−1(c1x3x2−1+log(x+1)x3x2−1−c13x3(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)−log3(x+1)x3(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)−3c1log2(x+1)x3(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)−c1x3(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)−3c12log(x+1)x3(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)−log(x+1)x3(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)+c12−x2+c12+log2(x+1)+2c1log(x+1)+1x2(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)+log2(x+1)−x2+c12+log2(x+1)+2c1log(x+1)+1x2(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)+2c1log(x+1)−x2+c12+log2(x+1)+2c1log(x+1)+1x2(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)+−x2+c12+log2(x+1)+2c1log(x+1)+1x2(x2−1)(c12+2log(x+1)c1+log2(x+1)+1)+c1xx2−1−c1x+log(x+1)xx2−1−log(x+1)x+c13xc12+2log(x+1)c1+log2(x+1)+1+log3(x+1)xc12+2log(x+1)c1+log2(x+1)+1+3c1log2(x+1)xc12+2log(x+1)c1+log2(x+1)+1+c1xc12+2log(x+1)c1+log2(x+1)+1+3c12log(x+1)xc12+2log(x+1)c1+log2(x+1)+1+log(x+1)xc12+2log(x+1)c1+log2(x+1)+1−c12−x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1−log2(x+1)−x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1−2c1log(x+1)−x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1−−x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1)}} ✓ Maple : cpu = 1.654 (sec), leaf count = 239
{y(x)=arctan(1_C12−2_C1ln(1+x)+(ln(1+x))2+1((−ln(1+x)+_C1)(ln(1+x))2−2_C1ln(1+x)+_C12−x2+1+x),1_C12−2_C1ln(1+x)+(ln(1+x))2+1(ln(1+x)x−_C1x+(ln(1+x))2−2_C1ln(1+x)+_C12−x2+1)),y(x)=arctan(1_C12−2_C1ln(1+x)+(ln(1+x))2+1((ln(1+x)−_C1)(ln(1+x))2−2_C1ln(1+x)+_C12−x2+1+x),1_C12−2_C1ln(1+x)+(ln(1+x))2+1(ln(1+x)x−_C1x−(ln(1+x))2−2_C1ln(1+x)+_C12−x2+1))}
[next] [prev] [prev-tail] [front] [up]