2.742   ODE No. 742

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

y(x)=(cos(y(x))+x+1)cos(y(x))(x+1)(xsin(y(x))1) Mathematica : cpu = 3.07936 (sec), leaf count = 3913

{{y(x)sec1(c1x3x21+log(x+1)x3x21c13x3(x21)(c12+2log(x+1)c1+log2(x+1)+1)log3(x+1)x3(x21)(c12+2log(x+1)c1+log2(x+1)+1)3c1log2(x+1)x3(x21)(c12+2log(x+1)c1+log2(x+1)+1)c1x3(x21)(c12+2log(x+1)c1+log2(x+1)+1)3c12log(x+1)x3(x21)(c12+2log(x+1)c1+log2(x+1)+1)log(x+1)x3(x21)(c12+2log(x+1)c1+log2(x+1)+1)c12x2+c12+log2(x+1)+2c1log(x+1)+1x2(x21)(c12+2log(x+1)c1+log2(x+1)+1)log2(x+1)x2+c12+log2(x+1)+2c1log(x+1)+1x2(x21)(c12+2log(x+1)c1+log2(x+1)+1)2c1log(x+1)x2+c12+log2(x+1)+2c1log(x+1)+1x2(x21)(c12+2log(x+1)c1+log2(x+1)+1)x2+c12+log2(x+1)+2c1log(x+1)+1x2(x21)(c12+2log(x+1)c1+log2(x+1)+1)+c1xx21c1x+log(x+1)xx21log(x+1)x+c13xc12+2log(x+1)c1+log2(x+1)+1+log3(x+1)xc12+2log(x+1)c1+log2(x+1)+1+3c1log2(x+1)xc12+2log(x+1)c1+log2(x+1)+1+c1xc12+2log(x+1)c1+log2(x+1)+1+3c12log(x+1)xc12+2log(x+1)c1+log2(x+1)+1+log(x+1)xc12+2log(x+1)c1+log2(x+1)+1+c12x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1+log2(x+1)x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1+2c1log(x+1)x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1+x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1)},{y(x)sec1(c1x3x21+log(x+1)x3x21c13x3(x21)(c12+2log(x+1)c1+log2(x+1)+1)log3(x+1)x3(x21)(c12+2log(x+1)c1+log2(x+1)+1)3c1log2(x+1)x3(x21)(c12+2log(x+1)c1+log2(x+1)+1)c1x3(x21)(c12+2log(x+1)c1+log2(x+1)+1)3c12log(x+1)x3(x21)(c12+2log(x+1)c1+log2(x+1)+1)log(x+1)x3(x21)(c12+2log(x+1)c1+log2(x+1)+1)c12x2+c12+log2(x+1)+2c1log(x+1)+1x2(x21)(c12+2log(x+1)c1+log2(x+1)+1)log2(x+1)x2+c12+log2(x+1)+2c1log(x+1)+1x2(x21)(c12+2log(x+1)c1+log2(x+1)+1)2c1log(x+1)x2+c12+log2(x+1)+2c1log(x+1)+1x2(x21)(c12+2log(x+1)c1+log2(x+1)+1)x2+c12+log2(x+1)+2c1log(x+1)+1x2(x21)(c12+2log(x+1)c1+log2(x+1)+1)+c1xx21c1x+log(x+1)xx21log(x+1)x+c13xc12+2log(x+1)c1+log2(x+1)+1+log3(x+1)xc12+2log(x+1)c1+log2(x+1)+1+3c1log2(x+1)xc12+2log(x+1)c1+log2(x+1)+1+c1xc12+2log(x+1)c1+log2(x+1)+1+3c12log(x+1)xc12+2log(x+1)c1+log2(x+1)+1+log(x+1)xc12+2log(x+1)c1+log2(x+1)+1+c12x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1+log2(x+1)x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1+2c1log(x+1)x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1+x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1)},{y(x)sec1(c1x3x21+log(x+1)x3x21c13x3(x21)(c12+2log(x+1)c1+log2(x+1)+1)log3(x+1)x3(x21)(c12+2log(x+1)c1+log2(x+1)+1)3c1log2(x+1)x3(x21)(c12+2log(x+1)c1+log2(x+1)+1)c1x3(x21)(c12+2log(x+1)c1+log2(x+1)+1)3c12log(x+1)x3(x21)(c12+2log(x+1)c1+log2(x+1)+1)log(x+1)x3(x21)(c12+2log(x+1)c1+log2(x+1)+1)+c12x2+c12+log2(x+1)+2c1log(x+1)+1x2(x21)(c12+2log(x+1)c1+log2(x+1)+1)+log2(x+1)x2+c12+log2(x+1)+2c1log(x+1)+1x2(x21)(c12+2log(x+1)c1+log2(x+1)+1)+2c1log(x+1)x2+c12+log2(x+1)+2c1log(x+1)+1x2(x21)(c12+2log(x+1)c1+log2(x+1)+1)+x2+c12+log2(x+1)+2c1log(x+1)+1x2(x21)(c12+2log(x+1)c1+log2(x+1)+1)+c1xx21c1x+log(x+1)xx21log(x+1)x+c13xc12+2log(x+1)c1+log2(x+1)+1+log3(x+1)xc12+2log(x+1)c1+log2(x+1)+1+3c1log2(x+1)xc12+2log(x+1)c1+log2(x+1)+1+c1xc12+2log(x+1)c1+log2(x+1)+1+3c12log(x+1)xc12+2log(x+1)c1+log2(x+1)+1+log(x+1)xc12+2log(x+1)c1+log2(x+1)+1c12x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1log2(x+1)x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+12c1log(x+1)x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1)},{y(x)sec1(c1x3x21+log(x+1)x3x21c13x3(x21)(c12+2log(x+1)c1+log2(x+1)+1)log3(x+1)x3(x21)(c12+2log(x+1)c1+log2(x+1)+1)3c1log2(x+1)x3(x21)(c12+2log(x+1)c1+log2(x+1)+1)c1x3(x21)(c12+2log(x+1)c1+log2(x+1)+1)3c12log(x+1)x3(x21)(c12+2log(x+1)c1+log2(x+1)+1)log(x+1)x3(x21)(c12+2log(x+1)c1+log2(x+1)+1)+c12x2+c12+log2(x+1)+2c1log(x+1)+1x2(x21)(c12+2log(x+1)c1+log2(x+1)+1)+log2(x+1)x2+c12+log2(x+1)+2c1log(x+1)+1x2(x21)(c12+2log(x+1)c1+log2(x+1)+1)+2c1log(x+1)x2+c12+log2(x+1)+2c1log(x+1)+1x2(x21)(c12+2log(x+1)c1+log2(x+1)+1)+x2+c12+log2(x+1)+2c1log(x+1)+1x2(x21)(c12+2log(x+1)c1+log2(x+1)+1)+c1xx21c1x+log(x+1)xx21log(x+1)x+c13xc12+2log(x+1)c1+log2(x+1)+1+log3(x+1)xc12+2log(x+1)c1+log2(x+1)+1+3c1log2(x+1)xc12+2log(x+1)c1+log2(x+1)+1+c1xc12+2log(x+1)c1+log2(x+1)+1+3c12log(x+1)xc12+2log(x+1)c1+log2(x+1)+1+log(x+1)xc12+2log(x+1)c1+log2(x+1)+1c12x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1log2(x+1)x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+12c1log(x+1)x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1x2+c12+log2(x+1)+2c1log(x+1)+1c12+2log(x+1)c1+log2(x+1)+1)}} Maple : cpu = 1.654 (sec), leaf count = 239

{y(x)=arctan(1_C122_C1ln(1+x)+(ln(1+x))2+1((ln(1+x)+_C1)(ln(1+x))22_C1ln(1+x)+_C12x2+1+x),1_C122_C1ln(1+x)+(ln(1+x))2+1(ln(1+x)x_C1x+(ln(1+x))22_C1ln(1+x)+_C12x2+1)),y(x)=arctan(1_C122_C1ln(1+x)+(ln(1+x))2+1((ln(1+x)_C1)(ln(1+x))22_C1ln(1+x)+_C12x2+1+x),1_C122_C1ln(1+x)+(ln(1+x))2+1(ln(1+x)x_C1x(ln(1+x))22_C1ln(1+x)+_C12x2+1))}