2.745   ODE No. 745

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

y(x)=(y(x)log(x)1)3x(y(x)+y(x)log(x)1) Mathematica : cpu = 11.3678 (sec), leaf count = 546

Solve[1y(x)(log(x)K[1]K[1]1log3(x)K[1]3+log(x)K[1]3K[1]33log2(x)K[1]2K[1]2+3log(x)K[1]1+RootSum[K[1]3#1K[1]2#13&,K[1]log(K[1]log(x)#11)log(K[1]log(x)#11)#1K[1]2+3#12&]+RootSum[K[1]3#1K[1]2#13&,4log(x)K[1]34log(x)log(K[1]log(x)#11)K[1]312log(K[1]log(x)#11)K[1]3+12K[1]3+4log(K[1]log(x)#11)K[1]2+5log(x)#1K[1]25log(x)log(K[1]log(x)#11)#1K[1]2+16log(K[1]log(x)#11)#1K[1]216#1K[1]212log(x)#12K[1]+12log(x)log(K[1]log(x)#11)#12K[1]+5log(K[1]log(x)#11)#12K[1]5#12K[1]+5log(K[1]log(x)#11)#1K[1]12log(K[1]log(x)#11)#1228log(x)K[1]39K[1]327log(x)#1K[1]219#1K[1]228K[1]2+9log(x)#12K[1]+27#12K[1]+27#1K[1]9#12&]K[1])dK[1]y(x)RootSum[#13#1y(x)2+y(x)3&,y(x)log(#1+y(x)log(x)1)#1log(#1+y(x)log(x)1)3#12+y(x)2&]log(x)=c1,y(x)] Maple : cpu = 0.275 (sec), leaf count = 78

{y(x)=47RootOf(27783_Z(2209_a39261_a+9261)1d_a7ln(x)+3_C1)84(47ln(x)47)RootOf(27783_Z(2209_a39261_a+9261)1d_a7ln(x)+3_C1)84ln(x)+21}