2.75   ODE No. 75

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

y(x)exy(x)+ex=0 Mathematica : cpu = 0.137958 (sec), leaf count = 20

{{y(x)log(1eex+c1)}} Maple : cpu = 0.116 (sec), leaf count = 20

{y(x)=ex+ln(1+eex+_C1)_C1}

Hand solution

y=exyexy=ex(ey1)(1)1ey1dy=exdx

Integrating both sides. 1ey1dy. Let ey=u, then dudy=ey=u. Hence dy=duu, therefore the integral becomes1u1(duu)=1u(u1)du But 1u(u1)=(1u1u1), hence1u(u1)du=(1u1u1)du=lnuln(u1)=lneyln(ey1)=(ln(ey1)lney)

But lnxlny=ln(xy) and the above becomes1ey1dy=[ln(ey1ey)]=ln(1ey)

Back to (1), when we integrate both sides, and since exdx=ex+Cln(1ey)=ex+Cln(1ey)=ex+C1

Hence1ey=exp(ex+C1)ey=1exp(ex+C1)

Taking logsy=ln(1exp(ex+C1)) Let eC1=C2 theny=ln(1C2eex) Verification

ode:=diff(y(x),x)=exp(x-y(x))-exp(x); 
my_sol:=log(1-_C1*exp(-exp(x))); 
odetest(y(x)=my_sol,ode); 
0