\[ y'(x)=-\frac {y(x) \coth (x) \left (x^2 y(x) (-\log (2 x))+x \log (2 x)+\tanh (x)\right )}{x} \] ✓ Mathematica : cpu = 4.02431 (sec), leaf count = 88
\[\left \{\left \{y(x)\to \frac {\exp \left (\int _1^x\frac {-\coth (K[1]) K[1] \log (2 K[1])-1}{K[1]}dK[1]\right )}{-\int _1^x\exp \left (\int _1^{K[2]}\frac {-\coth (K[1]) K[1] \log (2 K[1])-1}{K[1]}dK[1]\right ) \coth (K[2]) K[2] \log (2 K[2])dK[2]+c_1}\right \}\right \}\] ✓ Maple : cpu = 0.242 (sec), leaf count = 75
\[ \left \{ y \left ( x \right ) ={{{\rm e}^{\int \!{\frac {-x\ln \left ( 2 \right ) -x\ln \left ( x \right ) -\tanh \left ( x \right ) }{x\tanh \left ( x \right ) }}\,{\rm d}x}} \left ( \int \!-{\frac { \left ( \ln \left ( 2 \right ) +\ln \left ( x \right ) \right ) x}{\tanh \left ( x \right ) }{{\rm e}^{\int \!{\frac {-x\ln \left ( 2 \right ) -x\ln \left ( x \right ) -\tanh \left ( x \right ) }{x\tanh \left ( x \right ) }}\,{\rm d}x}}}\,{\rm d}x+{\it \_C1} \right ) ^{-1}} \right \} \]