\[ y'(x)=\frac {a x y(x)^2 \cosh (x)+b x^3 \cosh (x)+y(x) \log (x)}{x \log (x)} \] ✓ Mathematica : cpu = 3.70437 (sec), leaf count = 61
\[\left \{\left \{y(x)\to \frac {\sqrt {b} x \tan \left (\sqrt {a} \sqrt {b} \int _1^x\frac {\cosh (K[1]) K[1]}{\log (K[1])}dK[1]+\sqrt {a} \sqrt {b} c_1\right )}{\sqrt {a}}\right \}\right \}\] ✓ Maple : cpu = 0.273 (sec), leaf count = 33
\[ \left \{ y \left ( x \right ) ={\frac {x}{a}\tan \left ( \sqrt {ab} \left ( {\it \_C1}+\int \!{\frac {x\cosh \left ( x \right ) }{\ln \left ( x \right ) }}\,{\rm d}x \right ) \right ) \sqrt {ab}} \right \} \]