[next] [prev] [prev-tail] [tail] [up]
y′(x)=−y(x)(x2y(x)(−coth(x+1))+log(x−1)+xcoth(x+1))xlog(x−1) ✓ Mathematica : cpu = 24.8381 (sec), leaf count = 348
{{y(x)→exp(∫1x−e2cosh(K[1])K[1]−cosh(K[1])K[1]−e2sinh(K[1])K[1]+sinh(K[1])K[1]−e2cosh(K[1])log(K[1]−1)+cosh(K[1])log(K[1]−1)−e2log(K[1]−1)sinh(K[1])−log(K[1]−1)sinh(K[1])K[1]log(K[1]−1)(e2cosh(K[1])−cosh(K[1])+e2sinh(K[1])+sinh(K[1]))dK[1])−∫1xexp(∫1K[2]−e2cosh(K[1])K[1]−cosh(K[1])K[1]−e2sinh(K[1])K[1]+sinh(K[1])K[1]−e2cosh(K[1])log(K[1]−1)+cosh(K[1])log(K[1]−1)−e2log(K[1]−1)sinh(K[1])−log(K[1]−1)sinh(K[1])K[1]log(K[1]−1)(e2cosh(K[1])−cosh(K[1])+e2sinh(K[1])+sinh(K[1]))dK[1])(e2cosh(K[2])K[2]2+cosh(K[2])K[2]2+e2sinh(K[2])K[2]2−sinh(K[2])K[2]2)K[2]log(K[2]−1)(e2cosh(K[2])−cosh(K[2])+e2sinh(K[2])+sinh(K[2]))dK[2]+c1}} ✓ Maple : cpu = 0.279 (sec), leaf count = 108
{y(x)=(e−∫−xcosh(1+x)−ln(x−1)sinh(1+x)ln(x−1)sinh(1+x)xdx)−1(_C1+∫−xcosh(1+x)ln(x−1)sinh(1+x)e∫−xcosh(1+x)−ln(x−1)sinh(1+x)ln(x−1)sinh(1+x)xdxdx)−1}
[next] [prev] [prev-tail] [front] [up]